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Part I

MULTIPLE SCATTERING OF POLARIZED LIGHT BY ANISOTROPICALLY
SCATTERING SPHERICAL PARTICLES IN A PLANE PARALLEL MEDIUM OF

ARBITARY OPTICAL THICKNESS~THEORY

Abstract:

A theory of the multiple scattering of polarized light 1s
described using the doubling method of van de Hulst. The
concépt of the Stokes parameters 1ls derived and used to de-
'Velbp the form of the scattéring phase matrix of a single-
particle. The diffuse reflection and transmission matrices
of a single scattering plane parallel atmosphere 1s expressed
as a function of the phase matrix and the symmetry properties
of thesé matrices are examined. Four matrices are required
to describe scattering and transmission instead of the usual
two as 1n intensity only theory. The scattering matrix that
results froﬁ the addition of two identical layefs is derilved.
By this doubling method the scattering and transmission

- matrices of layers of arbltrary optical thickness can be .
derived. The doubling equations are then rewritten 1n terms
of their fourier components. Computation time is reduced
since each fourier component doubles i1ndependently. Com- -

. putation time 1s also reduced through the use of symmetry
propertles as well as by other methqu discussed.



I Scattering from a Single Particle - The Stokes Parameters

In this Sectioﬁ we willl .-develop a method to fully describe
the state of polarization of an arbitrarily polarized parallel
beam of light. .We.éhall show how to represent the scattering
from a single partiple in terms of the Stokes matrix and the
Stokes vector. Some physicalbinsights into the meaning of the
Stokes vector shall also be developed. ’Iﬁ the interests of
brevity many results and theorems on polarized light will not be
proVed{dsince they are the fesult_of the work of others. The
reader 1s referred to Chandrasekhar'sl book, Radlative Trans-
fér (hereln abbreviated R.T.), for further discussion of some
points. |

An arbitrary beam of light can be regarded as a mixture of
"a completely polérized beam-and a completely unpolarized inde-
pendent beam. We mean by unpolarized and independeﬁt that the
electric fields, resolved along two perpendicular vectors .normal
.to the dlrection of propagation, that 1s, in the transverse plane,
will show no permanent phase correlations with each other and .
will have equal amplitudes. The perpend%gular electric vectoré
of the polarized beam, while'having no permanent phase, dg retain
a permaneﬁt phase dilfference §.

o Let o andAB be the time varying uncorrglated phases bf’the
electric flelds of the unpolarized beam. Let "1" and “rﬁ refer
to directionésparallel and perpendicular respectively to a plane,

as yet unspecified, which contains the direction of propagatioﬁ.
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These directions then lie in the plane transverse to the.direc;J
tion of propagation. The sense. of the two unit. vectors éi and
ér is chosen such that é? X él-is 1n the direction of propaga-
tion. Then the beam may be represented by the real part of the

complex electric vector E(t).

E(t) Er(t)ér + El(t)él:

18 1o, 1wt 18, 1wt
(E,e” + Eye” e ér + (E{ + E,e7)e él

Ev-is the amplitude of the unpolarized component of the electric
field. The symbol " means a complex quantilty and * will mean

complex Congugate.

The four quantitiles Er’ E AEu and 8§ determine the. state 6f

1!
polarization. Because of their unsymmetric nature, another set -

"of quantities is preferred. Thésé are a set of parameters simi-
lar to a set introduced by Sir George Stokes 1n 1852. They form
a repfesentation commonly called the Stokes vector

T = [Ty5 T U, V]

f"

The meaning of these four quantities is next defined.. In

what follows'the symbol <> means the time average.of the quanti-

ty within the brackets. Thus .for example <eia . eiB> = 0 and:

= S tal - A :
<El f B8 > = 0. Then
- = 2 2
= %> =
I, = <E; + E;¥> = B,° + B,



Py i A % .
2Re<Er E1 > 2E1Er cos 6

(@
1

A

" %
2Im <Er' E1 >

<
1]

2E1Er sin §

Care must be téken in the sign of V as a minus sign can easily
be mislaid. Here § is the amount that é; leads éi when viewed
against the direction of propagation.

An alternate set of Stokes parametefs is the set [I,Q,
U,V]. They are related to the previous set by the relations:

I =1, +1I

Q = Il - I,
They willl be used interchangeably with the first set whenever
they will help simplify an expression. The first set, however,
will be preferred in the equations we shall see later.

Some discussion of the physical meaning of the Stokes par-
ameters at this time would be in order. Assume that the beam is
completely polarized. Then Eu is zero. The end point of the
electric vector

E—A(t> = (Erei((S + (Dt))é‘r. + E eiwtél

1
sweeps out an ellipse in space, figure.l.l.TheAellipse 1s tilted
by an angle x, which is sometimes referred to as the plane of
polarization. 1y is positive wheﬁ measured clockwise from él,
tan 2x = U/Q. Note also that for a fully polarized beam

12 = Q2 + U2 + V2,

The ratio of the semimajor axes of the ellipse, tan B,
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Figure 1.1 Elliptical polarization.

incident rab

2

Figure 1.2 The scattering event in the coordinate system of the

scattering plane.

scattered ray

£




is given by
v

sin 28 = .
Q2 ¥ Uy + V2

. See R.T. p25-28 for derivation.

For natural, unpolarized, light Q = U =V = 0. Complete
linear polarization occurs when I = *Q and U = V = 0, Complete
circular polarization occurs when é; leads or lags é& by 90°
and there 1s no unpolarized component. Then I = #V and
Q = U = 0. The polarization is right handed or left handed as
the sigh of V 1s positive or negative respectively. Right
handed polarization means that when viewed against the direction
of propagation the electric vector turns in a clockwise direq-
tion.

The previous relations were skibped over rather quickly
without any derivation. They are useful relations bup the
mathematlcs necessary to derive them is not worth repeating as
theytgan be found in the references cited. Of more importance
to laﬁer work 1s some physical rather than mathematical insight
into the Stbkes parameters. It 1is already apparent, because of
the&representation chosen that Q represents the excess of para-
llel over perpendicular linearly polarized light. It is less
obvious that both U and"V lend themselves to the same kind of
interpretation.

If we chose 2 new perpendicular axes "g" and "p" rotated
45° from "1" and "r" then it:éan be shown that U is the excess
of "q" over "p" linearly polarized light. V, as we shall show,
is the excess of right handed over left handed circularly

polarized light.



To do this we chose a new set of unit. vectors %o replace
those of equation l.l. If we choose § = 7/2, Eo = Er =Es
Eu = 0, then V=1, U= Q@ = 0 and we have a right handed cir-

1wt

cularly polarized beam Eo (¢, + 1¢,)e This leads us to the

cholce of 2 new unit vectdrs é+ and ¢_ defined by
.él'i iér
/5 R

In terms of these new basls vectors we may represent an:

¢, =

arbitrarily polarized beam in an alterpate way

(E, % + E_+ Eu(eia + eiB§)eiwt¢i

E(t) .

18

+

i(E+ e - E +E

u

(eiu -eiB))eiwtér

This also allows circular and linear fepresentations to be
interrelated.

Now from equation 1.2,

2Im<E - E_#%>
r

\ 1"

- E+2 _ E_2

Thus we see V 1is the amount by which fight handed circular
polarization exceeds left handed circular éélarization.

Now let us describe the transformation of the‘Stokes par-
ameters due to scattering off a single sbherical particle.
Consider a parallel beam of. light having an arbltrary state of
poiarization incident on the particle. The situation is shown
in figure 1.2.°

Now we define "r" and "1" to be directions perpendicular

and parallel to the scattering plane defined by incident ray
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"1" and scattered ray "s". © 1s the scattering angle and is
zero for undeflected light.
For spherical particles the transformation properties of

the scattering process can be described in terms of electric

fields by

E,%(0) NONANNE
1.4 - |

Er (e 0 A,(©O) Er'

A A

A, and A, are complex function of © having no time depend-
ence . The off diagonalterms are zero only for particles having
spherical symmetry. For any other type of particle they are not
zero. Spherical particles rarely occur in nature, but unfor-
funately we cannot easily calculate these four quantities unless
we assume the particles are spherical. This will be assumed in
all that follows.

We will now derive the transformation matrix for the Stokes
parameters thus putting equation 1.4 in a more faclle form. ‘Fnom

fhe definitions in equation 1.2 we have

A

s _ AS ] S* - A . A % i
I <Ey EJ¥> (A, Ay )Il
s = S . AS* ] A o A * i
IP <Er Er > (Az A, )Ir

U° = 2Re<E® . ES>
r 1

= Re(A; - A®)UY - Im(a, - AVt

VS = 21m<gE® - ES%>
r 1

= (A, - A, %)UL + Re(a, - A *)vi

This follows from the following easily deriveable ident-
ities: |



Re(X-¥) = Re(X)Re(¥) - Im(X)Im(Y¥)

Im(X)Re(¥) + Re(X)Im(Y)

Im(X-Y)

We can now wrilte down the transformation law that describes'.
the changes in the stokes.vector of the outgolng wave due to the
scattering from a single spherical particle:

TS = F(e) - Tt

Ii\ P, 0 0 0 Iig

i i o P, 0 O it \
t Us ) 0 0 P; -P, gt

vS o o e, P,/ Wi
where

A ~

P1(0) = A;-A;¥

Po(0) = Ap-A,¥
P3(0) = Re(Ap-A %)
Py(0) = Im(A, A %)

These functions, Pige), are'also functions of the real and
imaginary parts of the iﬁdex of refraction, the size of the
partible and the Wavelengthvof obéervation. They were produced
by a Mie program Written by J. V. Daveiyhich 1s available upon
request from I.B.M. We defer until later a discussion- of Mie
_ theory,since it would‘intérrupt the development we have started.

At this point however it 1s useful to change our point of
view from single scattering on a. single particle‘to single
scattering ornt many pérticles. In the computer program that:
parallels this'theqpetical‘developmenﬁ we use’ for Pi the Stokes

matrix -elements averaged over a polyédisperéion'Of partlcles.
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In doing this we make many assumptions. The spherical particle
1s replaced with a spherical volume element large enough to con-
tain a statistically homogeneous collection of particles which
perform random motions 1n time scales short enough so that there
are no permanent phase correlations in the radiation scattered
off the various particles during the period of observation.
Otherwise the scattering theory would have to be expressed in
terms of the complex amplitudes Xl and Kz Instead of the inten-
sity coefficients Pi' In the case of scattering from stationary
objects such as radar return from boulders on the moon the above
assumption does not hold. In this case, however, the use of
intensitles rather than complex amplitudes can be justified by
introducing an ensemble average over a small portion of the sur-
face. Then 1f the surface moves, i.e. a rotating planet, the
procession of the scattering elements across the line of sight
is equivalent to a time average that can by the application of
ergodicity, be set equal to the average over the distribufion
of scatterers. R. Ruffinéahas shown that replacing time aver-
ages with ensemble averages results in an error of less than
10% for the radar cross sections predicted for 600 sec Integra-
tions of the radar return. The error in the measurements will
generally be higher for the applications we shall have since
instrumental calibration of the radar is only good generally
to £3 ab.

We implicitly make some further assumptions as to the char-

-acter of the spherical volume element. We assume that we can
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take the volume large enough to encompass é statistically repre-
seﬂtative sample of particles, yet small enough 'so that there .
1s no difference in intensity or polarization between light
" 1lluminating the front and rear hemispheres. When we begin
discussing multiple scattering we will also assume the particles
are far enough apart so that each particle is 1lluminated- by
plane waves. These properties are hard to realize in practice
but scattering theory generally gives good results in spite of
this. |

So far in -our discussion.we~have'réferred-the Stokes
matrix to a.set of axes defined by the scattering plane, the.
plane formed by the incident and scattered rays. But-the
scattering plane has no particular orientation in space and
changes for successlve scattering events. We will need to
describe the scattering .event in terms of a fixed coordinate.
system, independent of the scattering plane. To that end we will
need a law for rotation of the axes about the diréctioﬁ of prop-
agation.f

Assume fhat:the axes along which we measure thé polarization
properties-has been rotated in the clockwise direction by an
anglé ¢, figure 1.3. »

' :Note that ih figurel.3 the direction of propagation is out
of the page. This 1is the conventilon we shall use, that 1is, the
Stokes parameteré wlll always be reférred to propagation towards
the observer.

The rotational transformation for the electric fields how
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4
Figure 1.3 Rotation of coordinate axes.
: | /'/\;
/
", 4
bt i 4
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Figure 1.4 Scattering in a coordinate system' independent of the scattering
plane (shaded).
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becomes

X [ cos ¢ sin ¢ El.

1.6 ' =
v/ -

= >

0 >

fsin‘¢ cos ¢ Er

since E s a spaclal vector.

We will now derive the rotational transformation for the.

Stokes vector. Writing equation 1.2 in terms of the new axes

X and Y we havé

- . ¥

IX <Ex EX >

I- = <E *>

y y y . ‘
1.7 A ~

U, = 2Re<E - E_ *>

G X

V¢ = 2I@<E . EX*>

Now substituting equation 1.6 in equation 1.7 and using the

definitions of I,, I, U, and V from equation 1,2.

T. = coszd)I1 + sin?%¢I_ + Lsin2¢U
r 2

I = sin2¢Il + cos2¢T_ - Lsin2¢U
r 2

1.8

U¢ = -sin2¢Il + sin2¢Ir + cos 2¢U

vV, =V

Thus rotating the axes of observation through an angle ¢
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in the clockwise direction has the effect of subjecting the

Stokes vector, f, to the transformation f(¢).

f¢ = L(o)T
where
cos?¢ sin?¢ +s1n2¢ 0
1.9 T(¢) = sin?¢ cos?¢ -2sin2¢ 0
-sin2¢ sin2¢ cos2¢ 0
0 0 0 0

We are now prepared to describe the scattering in a
coordinate system independent of the scattering plane. The
scatterling process in the new coordinate systeﬁ>is shown in
figure 1.4,

Light in the meridian plane 0X:1Z enters the diagram at
X1 making an angle 8' with the local normal, 0Z, to the X-y
plane. It 1s scattered at O, and leaves at X, traveling in
the meridian plane 0X,;Z, with an angle of emergence 8. The
definitlion of the variables we shall use are clearly marked
on the diagram but they still need some discussion. A consis-
tant definition of azlmuthal directlions i1s needed because
azimuth related considerations are the source of more errors
than all other considerations combined. (For intensity only
Calculations, on the other hand, azimuth does not require
special attention.) We shall take as our definition of azi-
muth the angle in the x-y plane, measured from the arbitrary'x

axis, made by that meridian plane of the beam through Which the
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radlation entered the sphere, or, extending backwards along the
direction of propagation, would have entered the.sphere. On
the. other hand we measure 6 and 6' from the polnts at which the
light actually does pierce-the sphere. In:this we use-a dif-

. ferent convention than is usual, but it has the advantage of
-making the scattéring and transmission matrices that we shall
introduce later on more similar in notation and symmetry prop-
erties to the phase matrix. This is a decision ba;ed originally
- on computer considerations alone since in this way the computer
program algorithm is more similar to the equations on which it
is based.

Until now the abbreviations "1" and "r" in the Stokes
vector has referfed to directions parallel and perpendiéular to
fhe scattering plane X,0X,. If we now redefine "1" and "r" as
being directions parallel and perpendicular to the meridian
plane that the beam 1is in, then we must rewrite the Stokes
matrix in terms of this new definition. >Ti(6',¢') can be trans-
formed to the directions necessary for using the Stokes matrix
in eqﬁation 1.5 by applying to it the linear transformation
f(il), where 1; 1is the angle between the scattering plane X,0X,
-and the meridian plane 0X:Z through the point X;(=(8',4"')).

The-ﬁééﬁlting’expression
= = =1
1.10 P(Y)L(1,)T

describes the Stokes vector at P, in terms of direction parallel

and perpendicular to the plane of scattering. Note that
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for convenlence Y has been written to replace m1-0. To trans-
form 1.10 to our new set of coordinate axes, we must apply
f(—iz) where 1, 1s the angle at the point X,(=(6,¢)) between
the meridian plane 0X2Z and the scattering plane X;0Xs.

The angles 11 and -1, used 1n the rotation of coordinates
are not 1lmmediately obvious. In deriving then we must remember
the convention that all angles are positive if the direction of
rotation 1s clockwise when the direction of propagation is to-
wards the observer. We must also carefully follow the direc-
tions "1" and "r" in the scattering plane and rotate "1" into
the meridian plane so that it points upwards in figure 1.4,

The equatlon for the scattering process in the new coor-

dinate system now becomes

1.11 T° = -1 )T )T
=5 - = B N =1, 1 14
I (69¢) = R(e,e :¢ -¢)I (e :¢ )
where
cos?1, sin?i, ->sin2i, 0
sin?i, cos?i, . +%sin2i2 0
1.12 R=
+sin2i, -sin2i, cos2i, 0
0 0 0 0/
P1(y) 0 0 0
0 Po(y) 0 0

X i
0 0 P3(Y) —Pu(ll))/

0 0 +Py () Ps(y)
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cos?1, sin?1i, +%sin211 0

sin?%1, cos?1, -%sin2il 0

X o
-sinpi; +sin2i; cos2i; 0
0 0 s 0 1

Unfortunately there are no simple. relations between the
variables 1:,1i2,¥ and 6,¢,6',¢';'.Fr0m spherical geometry we

get the following reéults;"

1.13 . U = cos '(cos6cos6'-sinbsind'cosAd)
- - v 5dnd¢ - = sind¢
sin 1, sin® siny ° sin 1, sin® siny.
- co0sB' - cosbcosy cosb - cosB'cosy

cos i, cos i1 =

sinbsiny g sin6'siny

where A¢ = ¢'-¢ and we have used the results.

cos(X+m) —cos X

sin(X+m) -sin X

We shall write out equation 1.12 in full: since we will
need to refer to individual terms later on when we discuss
symmetry relations and fourier coefficients. For the conveni-
ence of later discussion we make the change of variable u - cos®H

and p' - cos@'. Define R' by -
R(u,u',0'-¢) = Q - R'(H,u'50'-9)

where 6 is the dlagnol matrix.
1 0 0 0
0 1 0 0

0 0 2 0
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The need for 5 arises out of the non-symmetrical nature of I

—_ 1°
I. on the one hand and U,V on the other. The matrix R' is

defined in terms of 1ts components as

R'11=P1cos?i1cos?l, + Ppsin?isin?i, + Pysin2i;sin2i,
R'12=Plsin211005212 + P200821181n212-%P3Sin21131n2iz
R'21=P1sin®i,cos?1l, + P,cos?1,sin?1; - $P3sin2i,sin2i,

R'22=P1sin?i1sin?%i, + choszilcosziz-+%Pasin2iﬁsin212

tothe R'33=4P1sin2l1sin2l, + {P?sin2i1sin2i, + IPscos2iicos2i,
R'34= —4Pycos2i,
R', 3= +%chos2il
R"yy= %Pa
R'13=-(P1sin2iicos®11 - P,sin2iisini, - P3cos2iisin2i,)
R'31=2(P1sin2i,cos?1; - P,sinli,sin?i, - Pjcos2i,sin2i,)
R'23=2(P1sin211sin?1, - P,sin2i,cos21, + Picos2i,s1n2i,)
L 1 R'32=%(Plsin2izsin2i1 - Pysin2iscos?i, + Picos2i,sinli;)

R'14=+%quin2iz
R'g1=—%quin2il
R'24=—%Pu3in2iz

R'42=+%P38in211

The components have been separated into two groups for ease
of discussion of their different properties later on. We shall
call matrix ﬁ, the phase matrix.

We shall not discuss the symmetry properties at length

since an extensive treatment has been published by J. W, Hovenier.q
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He uses the [I,Q;U,V] representation of the Stokes vector so
hié phase matrix.ls different in form than the one we have de-
rived. In addition, bécause of different definitions of 6,60!
and ¢, hls symmetry relations for the phase matrix are differ-
.ent fhan ours. However,khis.definition-of thé u,u', and. ¢ of
the scattering and transmission matrices, which we shall intro-
duce soon, 1s the same and so we may compare our equatlons with
his directly. Hovenler has derived all. of the symmetry proper-
tles -of the phase, scattefing and,transmiséion matrices. Of
;1these we will only need a few. They all follow from equations
1.13 and 1.14 -and a casual examination 1s all that isvnecéssary
to convince oneself of the validity of any one of them.

I have found 1t more convenlient, conceptually, to visualize
| the symmétry properties of the phase matrix in terms of three

inorthodox symmetry operators X,Y,Z.

4+ o+ +F -+ + o+ - -

+ o+ + + -+ o+ - -

l.lS'X— + + + ,Y_ - -t -] 2 Z_ - - 4+ 4+
- - - + 4+ - 4+ - -+ +

As ‘an example of thelr use, the action of X on an arbiltrary
matrix A is written B = X % A and defined in terms of compon-
ents by Bij =-Xij Aij’
be regarded as templates to be,placedfOYer the matrix to indi-

summation not 1implied. -Thus X,Y,Z can

cate sign changes. Under thls .definition X # Y = Z. We shall

indigaté by the ti1lde, ~, the transpose. of a matrik.
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1.16a R'(H,u",9-0") = ZxR'(u,u',0'-9)
1160 R'(u',u,0'-6) = xsK'(u,ut,6'-¢)
1.16c  R'(-u',#1,0"=¢) = Y4R'(=u,+u',0'-¢)
1.164 R'(=u,=u',9-0") = R'(+u,u',0"=0")

Equation 1.16a expresses the fact that those elements
which have a minus sign in matrix Z are odd functions of ¢'-¢,
and those with a plus silgn are even functions of ¢'-¢. This
wikl be important later on when we fourier analyze each matrix
element. The odd funcfions will be expressable as a sine
expansion and the even -functions as a cosine expansion. Equa-
tions 1.16b and 1.16c are of interest theoretically, but we
shall use them Just to reduce redundancy and thus increase the

speed of the computer computation.



IT Reflection and Transmission.Matrices from a Single

‘Scattering Layer and their Syﬁmetry Properties.

In thils section we shall derive the diffuse reflection and:
transmission properties of a single scattering, plane parallel
atmosphere. These will be expressed as functions of the phase
matrix we have already derived. We:shall also examine the
symmetry properties of these matrices with a view towards re-
moving computational redundancy later on. We will find that
we need four of these matrices instead of the usual two for
intensity only calculations.

Consider a parallel beam of iight of net flux

TF = m(F,F_,F ,F)
per unit area normal to the direetion of the beam in. the four
Stokes parameters, incident from above in the direction (ut,0'),
on a plane parallel atmosphere of'optical depth t. The distinc-
tion "from above" 1s important.  We wish to express the laws of
diffuse reflection.and transmission in terms of a scaﬁtering
matrix §(T;u,u',¢'—¢) and a transmiséion matrix %(T;u,u',@'—¢)
such that the intensity reflected upwards and the'intensity
transmitted downwards are given by |

T(0su,051',9") = %ﬁ» S(t3u,u',0"-9)F
1.17-

and I(T,-u,¢;u",¢") é'%g T(tsu,u',0'-9)F.

- The factdr 1/u has been added to insure similar symmetry

properties. to those mentioned for the phase matrix.

21
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We shall now derive § and % for 1light that has been scat-
tered only once in the layer. Consider that portion of the
atmosphere between t' and t' + dt'. At that depth a fraction
e_T'/“' will have penetratedwithout havingundergone scattering in
the atmosphere above. The contribution to the diffuse light in
the direction (ﬁ,¢) from the reduced intensity that penetratés

to this depth and 1s scattered is

e'T'/u' mF  dr!

R(u,u',0'-¢) = =

where R 1is. the phase matrix.given, by equation 1.14.
A fraction e_TVU emerges from the layer in the direction

(u,¢) without undergoing further scattering. Thus the contri-

bution to the diffuse intensity in the direction (u,¢) from

light that has been scattered once between ' and t' + dt' is

T/ M mT A
T

= R(u,u',0'-¢)dt' . See R.T., page 145.

The total intensit& from a layer ofAOptical depth 1 1s Just the

integral of this expression over Tt

~t(E 4+ E) 1L
U u! =+ Sy-1 _
[1-e L;u ](U U) R(u,u',¢'—¢)F

I(O;y,¢;u',¢')

In a similar manner we can derive the diffuse intensity trans-

mitted down in the direction (-u,¢). We find



23

~T/U_mT/W e -y = =
I(t;-u,03u',01) = L& =€ i 1T = B Roy,ur,0t-0)F.

We can now write down the scattering and transmission .matrices
for singly scattered light.

1 1
— 1 1 -1 =, = —
S(tsu,ut,0'=0) = (W + 1Y) [1-e”TOH + W By ur,61-9)

1.18 L )
Tltsu,ut,0'-0) = (W' =) [e 7 Moe™ ™M 7 R(cp,ut,6'-6)

[
~~
jod

|
=
~—r

In the 1limit as 1T + 0, the coefficilients of ﬁ in equatidﬁs 1.18
are just 1T for both § and %. Notice that interchanging u and.
' in equations 1.18 does not change the value éf the coeffic-
ients.

We shall now discuss the symmetry properties of the scat-
tering and transmission>matrices S' and %ﬁ defined 1in terms of

,§ and T by -

vl
]

ol
Zl

=l
1}

2l
Z1

We shall give the séme names to both the. primed and unprimed
matrices. It willl be clear from the context which is meant.
From equations 1.16 we may write down immedliately the

results -

|
N||
<l

'(U:U':»(b'—d’)

g'(u‘,u',¢-¢') ¥

1.19a

I
=
E S
H

%'(U:U',q)—(b') '(U,U',¢'—¢)
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1.19b §'(u',u,¢'—¢) X S u,ut,0t-9)

1.19¢ T (u',1,07-0) = T & B (u,ut, 60 -0)

So far we have discussed two of the four matrices that will
be‘needed; The need for the other two results from the fact
that § and % cannot express. the reflection and transmission of
radiation incldent from below the layer. Thls fact has sometimes
been overlooked in the literature where it generally assumed that
intensi%y equations are completely generalizable to polarization
equations. Specifilcally, i1t was overlooked 1n Chandrasekhar's
Radiative Transfer, where he states on page 170 that his invar-
iance equations for intensity can be generalized to polarization
by replacing the functions S and T by the matrices § and T.

To allow for this case we define two new matrices. §* and

T# such that the light scattered downwards from below is

1.20a T(T;—u,¢;—u',¢')=%a S#(tsu,u',0'-¢)F.
and the light transmitted upwards from below 1is

1.20b. T(O;u,¢;—u',¢')=%; T¥(T3u,u',¢'=9)F.

-~
-

We.can express S* and T* in terms of 8 and T if we make
use of the propertles of the original phase matrix. From 1.16d

we have

1.21a §*'(u,u',¢'—¢)=§‘(u,u',¢-¢')
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and
1.21b  T#'(p,u',¢"'=¢)=T' (u,u’,¢=0")

Physlcally, the need for %' and %*"as well as the rever-
sal of the azimuth direction comes about because the use of the
unstarred matrices to express scattering from below would result
in measuring aéimuth in- the opposite direction'than-scattering
from above. ’The definition of azimuth'iS'tiedito the direction
of propagation.

The symmetry relationships for S*' and %*' are exactly the

same as those for S!' and-%‘ expressed in equatidns 1.19.



ITTI Reflection and Transmisslon Matrices from a Multiple

Scattering Layer -- The Doubling Method.

We now have four matrices which completely describe the
reflection and transmilssion properties of a single scattering
plane parallel layer of any optical thickness. In this next
sectlon we shall see how to combine two ldentical layers using
a generalization of Van de Hulst'sSdoubling method. We will
then have the reflection and transmission matrices of a layer
of twice the optical thickness which multiply scatters the
light ©between the top and bottom halves. If we begin the
doubling with a layer whose optical thickness 1s so small that
only single scattering is present, we can derive the multiple
scattering properties of a layer of any optical thickness by a
sufficient number of doublings.

To derive the generalized doubling method it will be con-
venient to define some shorthand notation. We assﬁme the
incident intensity to be a parallel beam of net flux 7F in the
four Stokes parameters. It is a delta function in direction and

“we write it

T TTFﬁ(U—Uo ’q)_d)o)

or I = TFS

The diffuse intensity reflected from and transmitted through the
iayer is

™

0|

(QUIRTIN ’¢o_¢)%

26
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1" = T(Uon:q)o-q’)m‘
or
== _ 1 T =
JIT = WS F
=t 1 ==
17 = 3= F
wm T

Matrix multiplication 1s implied. If a diffuse. intensity
I(uos%o) 1s incident on a layer the diffuse intensity reflected

and transmitted will be

=5 1 1 2T — , _ o
I = Ty Io. fo S(u,u',6'-¢) I(u',0") du'de'

=t _

H
]

1 ! o = -
Tr S, f, TCusu',e'-¢) T(u',¢') du'as!

We will write this as

i
It=1r%—%-f

where the symbol "-" means

1ot 2T e
Fff dUdCb.

o] o]

It also will be useful to define another operation "," defined by.
1_ 1 2Tr'1 ' '
7t S, mar awras

so that we may wrilte

1 1 2T — .. . ‘ .
T S, SGunt,0t=0) T o(u'sue,00-9") du'dg

T
Zut



28

as
%ﬂ SoT
It can easlly be seen that associative rules hold for the
operators "*" and "o". Thus for example
SoTod3=238o (T o §) = (§ o T) o g
SoTF=(ScT) F=3o (TF)
and
SoT-T=(FoT) +-T=50(F-: 1)

Now consider the situation in figure 1.5. Two layers of
identical scéttering properties are placed together. It is
required to find the scattering properties of the two layers
combined. Light 1is incident from the direction (u,,%,) with

intensity T1 = 1F§. The diffuse intensity that is reflected

al

from the upper layer due to I- is

The intensity, both diffuse and direct, transmitted down through

the upper layer is

= _i-t/u, .1 5. =
D =1TI'e +gp T I

= nFse T/ Mo 4 %ﬂ TF
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Figure 1.5 Scattering from the sum of two layers.
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The 1intensity transmitted through the lower layer is
= _ =1/u= 1 5, =
0, = e D1+E'ET Dy

= nFSe”

=
H
£
+

5‘
—
=
+

I._l

=
Al
[o]
=1
o

f
-:E{
2l
=l
+
=
£l
2l
(o]
Al
i

The diffuse intensity transmitted ypwards by the upper layer is

By e T L. g,
P, = U,e +IET U,

e T/ M= T/ Mo = _ T/ = = _
= uu S F + T—S o T F
_T/Uo - -

e — —

= 1 =
%
+TT OSF+WT

ES
o
208
)
=l
|

The diffuse intensity produced by U; scattered downwards by the

upper layer 1s

D2 = g7 §* - T,
-T/Up — — — - —
=S S*oSF+iS*oSofF
W Ty

The diffuse intensity produced by D, transmitted downwards‘by

the lower layer is
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‘-1 "T/Uo = =*. == 1 = % — = =

+-Fu-e 'I‘o_'S OSF+H’TJ—T°S oS o TF
Continuing in thils way we find the reflected and transmitted
intensitiles from the two layers combined. Ignoring the directly
ftransmitted light, WFGe_ZT/U°, we may now write down immediately

the reflectlion and transmission matrices of the two layers com-

bined. They are

S(21) =S + e M g7 Vo 4 Mg o
-;lf22a' + e/ Mo px o zl.+ T% 6 %, o T
T(27) = T(e” T/ M4 &~/ Hoy 4 1 o 11
1 225 + e T/M zze‘T/ﬁ°+ e~V g, o

~+e—T/u°'ToZZ+T022°T

Where T, = S + S o S¥ 0 S + S o S% o S o 8% o 5 +

éﬁd.zzA= S¥ o' S + S¥ o S o 3% 0.3 + , .

Equations 22 are the doubling equations. Note that £, = S¥ o %,.
- We have dropped. the double lines above the matrices since it will

be clear from now on that matrices are implied.



IV The Doubling Equations - Fourier Components and Symmetry

Properties

It might seem now that the problem of comblning layers is
completely solved. In theory these equations could be programmed
into a computer and solved pumerically. In practice it is impos-
sible. Present state of the art computers are completely incap-
able of producing accurate answers from these equations for large
optical depths and non-Rayleligh phase functions given any reason-
able time limit. The rest of the discussion of the doubling
equations, therefore, 1s directed, as its main purpose, to save
computer time.

We shall see how to féwrite the doubling equations in terms
of the fourier components of -the reflection and transmission
matrices. We will find that each fourier component doubles in-
dependently. We shall alsc rewrite the symmetry equations for
these fourler matrices so that we may see which computations in
the doubling equations are redundant.

In order to motivate the analysis of the matrices 1nto thelr
fourier components, let us compare the amount of computation
necessafy for both methods. Let M be the number of fourier com-
ponents, let I be the number of integration points in the u in-
tegration and let K be the number of integration points in the
0 integration.. We would expect that K v I. Then the double

integral in ¢ and u would require

‘N¢ = 4% x I® x K = 4% x I% operations, symmetry considera-

tiong neglected. AThe cubed term arises because I operations are

32
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needed to integrate each of the I? sets of points at which the
function is defined in u, U, space. The single integral that
will appear in the fourier analysed equations requires
Ny = 43 x I® x M operations. 1In the case of Rayleigh scatter-
ing, reasonable answers are obtained for I ~ 4. M is exactly
3. Thus there is a factor of 5 improvement in- computer time
for the simplest realistic case. This improvement factor in-
creases markedly if the. answers are required at more ¢ pgints
since the fouriler components. can be recombined at any set of
¢ points. The improvement increases also as the phése function
becomes more anisotropic.

Consider the four matrices S, S¥, T, and T¥. Equations
1.2l 'and 1.19a show that all four have the same symmetry WithA

respect to"¢, that is, the terms marked with a "+" sign in

symmetry operator matrix Z, reproduced below, are even functions

of ¢ and those marked with a "-" sign are odd functions of ¢.
+ + - -
o[+ - =
2=l Dy
- -+ +

L

We may then expand the even terms in a cosine expansion and the
odd terms in a sine expansion.

The fourier analysis will take some discussion. Normally

th

the m fourier coefficient of a function is-ébtained by inte-

sin

COS(m¢) over the range of interest.

grating the function times
However this operation has to be done numerically and a moment's
consideration will reveal that as m increases the number of

integration points, which must be much greater than m, must
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increase as well, no matter how smooth the function. This seems
to be requiring more information from the function than should
be needed.

There exists another, not well known, approach by which
even functions having fourier coefficients up to order N and
odd functlons having fourier coefficlents up to order N-1 can
be analyzed using exactly N+l evenly spaced points. Assume
we have an even or odd function f(X) with a period 27 and which
is known at 2N+1 equally spaced polnts from -m to 7. Denote
the 2N points from -m to m by X, = 1 X % , 1= =(N-1),..., N
where we have not included -m in the set since f(-7m) = f(n)
implies that -7 1s not an independent point. If f£(X) can be
resolved exactly using 2N-1 fourier coefficlents in sine and

coslne then we may write

N-1

1.23 £(X,) = ap + 2 ak-igg(kxi)
k=1

(The method below using 2N points gives enough information to
determine ay for the cosine term so that 2N points would yield
2N coefficlents. However we will require sine and cosine four-
ier coefficlents of similar orders so that the Nth order cosine
coefficient will not be of use to us here. The neglect of ay
in 1.23 will stl1ll permit the other ak's to be found uniquely.)
Conventionally we would multiply by cos mX or sin mX and

integrate. Instead,

sin
cos

sin _ sin sin
i f(Xi) cos(mXi) =% I 1 k i cos(kXi> cos(mxi)

(mX,) +
" i
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N
where I = I
i 1=-(N-1)

It is possible to prove the following relations:

i cos kXi cos,mXii= 0 m# k
z sin kXi sin mXi =0 m # k.
i ‘
z sin2~kXi = N- k # 0
i, : .
L cos? kXy =N 'k # 0,N
i

I cos? NX, =2 1 =28
i i

Then we have immediately
_ 1 N
8 = .35 L f(Xi), f(X) even
1=-(N-1)
a, = 0 , £(X) odd
N
1 sin
a_ = = I £(x,) (mX, )
m N 1=—(N-1) 1% cos i

Since f(Xi) is even or odd in X we may write

sin
cos(mxi)

®
]
=

r b, f£(X,)
1=0 1 it

where by 1 1 # 0,N

o
I

g = 1/2 1 = 0N

= L
86 = b, f(Xi) s f(X) even

=0 , £(X) odd.
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It will be convenient notationally if we redefine the co-

efficients a, to be

1

Ny

sin
cos

|| S e R

by £(X,) (m¥X;), m =0, ..., N - 1.

=
n

o}

We must rewrite equation 1.23 in terms of this new definition
of a - Equation 1.23 now takes the form

= sin
1.24 £(X) = i (4 - 268,,) a1 eos (mX)

We are now ready to proceed with the fourier analysis of
the matrices themselves. We have shown how to compute the
fourler component numerically. Under the definition of the
fourier components glven by equations 1.24 and 1.25 we rewrite

the standard fourier analysis-synthesis equations as

= m : sin
1.26 f£(¢) = i ££7 (4 - 28 ) ST (me)
_ 2T
where f£f" = %F o f(4) iig (m¢)do

0

Consider now as an example the equation

x|
]
2]

1.27

(o]

|||

2m
I B -0)T(6o-0" a0 T

0

or A(do-06)

A

O
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The variable u,u', and ﬂo have been suppressed for con-
venlience. Matrix multiplication is implied.

The inner integral 1s the integral over ¢ of 64 separate
functions. If we write both.S and T in the form of equation

m

1.26 ‘and denote the fourier coefficients by SS© and TT" then

equation 1.27 becomes

1.28 Iitg sin

LAATA o (m(¢o=9)) =
m

1 ! Fam o sin ' ==m in
r { { iSS mcos(m(¢ 4¢))iTT dm < (m(do-9" ))d¢ H_— where

4, = (4-25_)

Equation 1.28 needs some explanation. The equation is still
a matrix equation wilth matrix multiplication implied between all
the SS™ and TT" terms. The term zég now means.that each com-
ponent should be expanded in cosine or sine depending on
whether 1t 1s even or odd. Equation 1. 28 leads immediately to
the statement that all fourier components double 1ndependent1y.
To prove it, the equation must be wrip@en out in full and use
made‘of the standard orthogonality reiations between cosine
~and sine. We will not do that here since thevproof is as.ted—
ious as it 1s obvious.

The 64 separate expressions ‘on the right side'of equation

1.28 sre each of. the form

1

1.1t i ' !
Etfd;o SS kTTkjd;zog( (¢'-¢))ié2(m(¢o_¢ ))dd'%ﬁ— before summa-
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tion over k is performed.
There are 4 possible integrals indicated here. Their
values are, neglecting the constant coefficlents,
[sin sin d¢' = -7 cos m (¢o—0)
{cos cos do = Um cos m (¢o-9)/d_
1.30 ..
fsin cos d¢' = m sinm (¢o=¢)

fcos sin d¢'= 1 sin m (do=0)

The factor M/dm (=1, m ¢ 0; = 2, m = 0) appears only for
the 'cos cos' term, but we may multiply the 3 other terms by 1t
since they all contain 'sin' terms in either the right or left
slde of the equal signs and thelr coefficients are zero for
m = 0.

It 1s not immediately obvious that only cosine terms will
appear in the matrix elements marked "+" in matrix Z or that
only sine terms'will appear in the matrix elements marked "—"7
This,qhowever, 1s the case and can be seen only by careful
checking of each of the 64 terms with the ald of equation 1.30.

We may therefore now write the analog of equation 1.27 in
terms of 1ts fourier components and matrlix elements as

1 4

"
1.31 AAIfJ = (.1 88
. k=1

©

m m dH"
1k T1xg Ty

where rikj = =]

| {1=1,2; J=3,4; k=1,2}
for {1;33k} = v
{1=3,4; 3=1,2; k=3,41}
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and r = +1 for all other i,j,k. r,.,  follows from equation

ikjJ ijk
1.30 when note 1s taken of the position of sin and cos terms in
the matrices. Then with this new definition of matrix multip-
lication we may write equation 1.31 as a matrix equation

N — ——TT - ]

1.32 EAi" = &§8™ m du
where "*" stands for fourier component matrix multiplication
as defined in equation 1,31, If we define a new-opérétor
non by

T . F=m f

1
1.33 33" . PO = % o dpC

TT T

then we can rewrite .the doubling equations 1.22 in terms of the
fourier matrices. Because of our cholce of .conventions 1in the
fourier analysis-(see_equation 26), the equations have exactly
the same form with "°" replaced by ":" and single letters
replaced by double letters. We will write then again in their
new form, suppressing the double bar and "m" -for convenience.

IS

SS(21) = S8 + e /M 53, " T/Ho 4 o~T/H $L, 1 TT
1.345
4 e~ /VMo ppx , gp, 4 TT* . L. ¢ TT.

TT(21) = TT(e” /M 4 e'T/“O) + TT : TT

1.300 47 T/H g3, T/ Mo 4 o~T/M £, : TT

+e~ /Mo pp . z3, + TT - $%, : TT
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SS + SS : SS¥ : S3S + . .

1.35a where II)
1.35b and LI, = SS*¥ : ZI; = 3S¥ : 3S + S3%¥ : SS : 3Ss* : 3S...

Once again the assoclative rule can be shown to hold. Equations
1.34 and 1.35 are an exact analog of the intensity only equa-
tions derived by Hansen

The symmetry relations for the fourier scattering and
transmission matrices can be written down immediately from

equations 1.19 and 1.21.

1.36a SS'(u',u) = X = éé'(u,u')
1.36b TT' (u',u) = Y % f%'(u,u')
1.36c¢ SS'¥(u,u')= Z % 3S'(u,u')
1.364d TT'*¥(u,u')= Z % TT'(u,u")

Here again we use the prime to denote the matrices. before
multiplication by 5, v means the transpose and the operator
slgn % means the term by term multiplication by the sign of
the symmetry operators X, Y, Z.

The ?? Matrices

The doubling equations are not quite complete. We must
showlow to evaluate the infinite series involved in the def-
initions of XZ; and IZ.. Physically each term in LI, and ZZI:
represents the diffuse intensity of the radiation at each
bounce between the upper and lower layers. Intuitively we
expect the ratio of the components of two successive terms to
approach some limit independent of W and Uy. This turns out
to be the case.

=i+l

Let C* = <3yt'1/T5,> where 1ot is the i°P

term in the ex-

pansion 1.35a. The division is performed for each matrix
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element at each u and u,. The average <> is performed for each
matrix element over p and u, with equal weight given to each

(1,u0). Thus CF

is a matrix of 16 scalar quantitieé, each in-
dependent -of (u,uo).
When it has been determined that Ci is indeed the 1limit of

successlve ratios and hence independent of "i" we may write
1.37 £y =zl =33 + ..+
and T, = SS¥ : 3,.

The division.T%E is performed for each of the 16 matrix elements.

The determination Ei'= C while simple 1in concept is diffi-
cult computationally. The problem arises because the ratio
ZZ%+1/ZZ% does not approach a constant independent of u,u, very
well, or qulck enough in some cases. Sometimes, as in the case
of Rayleigh scattering the ratilo 1s of two zero matrices. This
must be tested for and the ratio set equal to zero since d#yi—
sion by zero causes interrubts in the execution of the combhéer
program. Sometimes, however, for Rayleigh and. Rayleigh=-like
.scattering, the divisor is zero, while the dividend is not.
This arises because, in the case of Rayleigh scattering at
_least, a -finite number of points has been used to describe the
Stokes parameters defined at an infinite number of poilnts. The
fourier terms that are computed for theoretically zero elements
are not always evalueted-to-be exactly zero. Tﬁis possibility

among many otheﬁs must be tested for and the ratio set to zero

1f the dividend ie small_enough. If the dividend is not small
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enough, the next term in the series is computed and the process
repeated.

For small optical depths a frequent problem arises. The
ratio 1s not only not constant, but changes sign with u,u.. It
would be meaningless to compute an average in this case. Fortun-
ately after a few (usually one or two) terms, the terms ZZ% are
so small compared wlth zzi that they may be disregarded. Since
the IBM 360 is only accurate to 6 places in single precision I
have set thils tolerance ratio to 10_6. As the optical depth
increases this problem of sign change still exists but disappears
in all cases tested so far before the 4th or 5th term.

For larger optical depths, 13.5, another problem arises.
Some of the terms 1n the matrix Ci oscillate back or forth around
the 1limit, convergling very slowly in the 3rd decimal place.

Again we are fortunate because the difference that the oscilla-
tioﬁ causes 1in II; can usually be brought below 10"6 with less
thaﬁ 5 terms.

There 1s yet another problem which must be dealt with. The
ratio Ci approaches the 1limit rather quickly in most cases. How-

ever there are polnts 1in the ratio ZZi+l/ 1

much greater or much less than Ci. As "i" increases these dif-

L~ which are eilther
ferences decrease. In the testing therefore we must make sure
that truncation of the series with the first few terms does not
impose a false value on LI: at a few points. This is done by

not allowing the series to terminate until the difference

caused by accepting the maximum and minimum values for the ratios
6

is less than 10" ~. This is perhaps unnessarily strict but

as Cl
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the amount of tésting necessary to reduce the restriction and
impréve confidence in less demanding tests is prohibitive on the
IBM 360/65 with the funds available. The testing subroutine can .
" sometimes take as much time as the computatién of a term ZZ%,
In the future it will be possible to have the computer "learn"
where to truncate the serieé from previous runs, thus saving
considerable computer time.

Before concluding this section it would be worthwhile to
mention some of the properties of the matrix.C. Not all- the
properties of C has been investigated since that was not the
Intention in getting the program working. But a few have been
noticed. For m=0 as .t gets larger the 4 non zero terms 11,12,
21,22»approach thebéame limit. The other 4 non-zero terms 33,
34,43,44 appear not to do so and in fact each term approaches
its own limit. (The ratio for symmetrical terms like 34 and 43
are always identical). It is possible that these 4 terms do
~approach the same limit .as T gets laréer and "i" increases, but
if so 1t converges much more slowly than the first 4. 1In any
" case we would not expect them to converge to the same limit as
the first M.because for m=0, the sine terms are zero and.the
4X4 matrix equations become reduceable to two 2X2 independent
'matrix‘equations.

For m + O the matrix C approaches a constant, that is, all
16 terms ﬁave the same ratio. Thils effect was noted as T gets
large, but‘it.is possible that in fact the approach to a con-

stant occurs for all 1T as "1" increases.
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One other effect may‘be noted in the matriX.C. The
integrations neccessary in these computations have not yet been
discussed with reference to the computer, but it is obvious
that we must use a finlte number of integration points. If we
have chosen too few points to correctly perform‘the integrations,
the problem will become most apparent in C for m = 0 when the
single scattering albedo is exactly 1. As T gets large C in-
creases. Too few integration points result in C becoming
greater than 1. At this point the computation ceases to have
any meaning, and the answers for a few doublings back can be
expected to be grossly lnaccurate.- Even if we were to use an
infinite number of integration points we expect that as 1 + =
the answers become more and more lnaccurate. This is due to
the loss of accuracy in the ratio 1/1-C as C approaches 1 with
only 6 significant figures.

The Numerical Integration Scheme

The doubling equations as written yield the scattering and
transmission matrices at any optical depth with complete accur-
acy. No approximations have been made in their derivation.

The 1oés of accuracy occurs in the algorithm for programming
the equations into a digital computer. Theoretically at least
we may choose the initial optical depth small enough so that no
loss of accuracy results 1in assuming only single scattering
exlsts in the initial scattering and transmission matrices.

The integration scheme we have chosen is the method of

Gaussian quadrature. Consider the integral
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1

I ={ F(x)dx.

©

This may be approximated by

N
I Y3z F(Xi) a
i=1
where ay is a sultably. chosen welght at Xy - If ay 1s chosen as

(Xi+l - Xiel)/z’ that is, the distance between the midpoints of
the intervélS'on.either side of Xy the effect is to evaluate.
the integral by computling the area under the trapozoids formed
by Joining the points with straight lines. The cholce of X4 is
arbitrary in this case.

Gaussian quadrature 1s much more sophisticated than this,
in that the points are chosen a priori given the number of

pdints, but baslcally the weights a, may still be thought of as

i
an. interval around x,.

i

There is no need to. derive thé_properties of Gaussian
integration as many books have sections on it (see, for example,
R.T., p. 61). Itﬂis'suffiéient to note that it is an extremely
powerful method capable of evaluating exactly the integral of
any polynomial of order r S 2n - 1 with only n points and their
respective weights. It is still'suprisingly accurate if
r > 2n - 1. Unless otherwise mentioned, Gaussian qﬁadrature
.;will be used in evaluating all future integrals that occur. If
- the integration interval is other than (0,1), say (a,b) then we
‘must choose the points Yy and the weights bi according to the

"

scaling laws
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1.38

<
e
It

a + (b—a)xi

o
1]

(b-2a) ay

where Xy and a; are the points and the weights on the interval-

(0,1).



V.  Elimination of Unnecessafy Computations Through the Use

of Symmetry Relations.

As ‘we have seen pre&iously, we may express some of the com-
ponents of the scattering and transmission matrices in terms of
- other components of the.same matrices. Changing our point of
View.from analytic to digital means that there exlsts some.
redundancy in the information content of the multidimensional
arrays that are the digital analog of the scattering and trans-
mission matrices. While there 1s no convenient way to reducé
the space these. arrays require in the computer, we can reduce
the computatlons necessary to.fill the space.

Equations 1.36 are the basis of this reduction. We need
only assume one other fact in order to proceed. The symmetry
properties were derived from the single scattering matriées.

It 1is by novmeané obvious that these properties will continue
to hold for large optical thickness. Thils however 1s true and
we shall assume it implicitly henceforth. It was checked num-
efically in test runs of the program and served as a continu-
ous check of conceptual mistakes in the creation of the
computer program. |

From equations 1,36 we have, in.component form,
' 1 1 = 1 t

. l = 1 '
TT ij(u > 1) ,YijTT ji(“’“ )
1.39

¥t 1 = ¥t ;

%1 Yy = % o
TT ij(u,u ) ZijTT ~ij(u,u ).

b7
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From this we see that SS and TT need only be calculated for
little more than half the matrix before all the information is
computed. However that 1s not the whole story.

Each term in the doubling equations is, of course, computed
separately. It is natural to assume that each term in the equa-
tions has the same symmetry as the term on the left hand side of
the equals sign. This 1s not the case.

A posteriori this 1s obvious. Such is the wonders of hind-
sight. Consider the terms of the form e‘T/“-zzl : TT and
e_T/“° TT#* : IX; 1in the SS equation. The remarks here apply
equally to similar terms in the TT equation. These are the
only terms in the equation which do not share the symmetrical
form of the other terms. In examining the computer representa-
tion of these terms it was found that instead of each term being
symmetrical with respect to itself, it was the sum of the terms
that had this property. Moreover each term appeared to be
expressible in terms of the other. We will now derive this
property.

Consider the term IZ,; ¢ TT. It is logical to assume that
2Z1 has the same symmetry as the term on the left hand side --
that of SS. This will not be proved, but the assertion has
been checked numerically. The statement that II, has the same
symmetry as TT 1s true also and has been checked as well.

The term XX, : TT may be written in component form as

(zZy ¢ TT)ij (Hsuo) =

[y

du!

Qy flz{(zz'ik(u,u')r. QkTT'kj(u';Uo) T

ijk
o}
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where we have noted that -the matrix Q'may be written slightly.
ambiguously as Qi’ We .could write 1t as a full matrix, Qi.éil’
but this would necessitate expressing another full matrix. . multi-
plication in the equation. If we let Qil = Qi we must make sure

that Q performs its intended function -- multiplication of the

3rd and Mth rows by 2. The appearance of Q in the equations

occurs when we go from unprimed to primed terms.
1

du'’!

—_ . 1 t 1. 1

1

. | o .
= %1 1 ! t
9 fo;§ (TTJk(uo,u )ijzkjrikakainzz g (M ’U))~‘u'

Now ijzkj = ij since'multiplication‘of-these symmetry matrices
is component by component. Then we have ijin'on,Xikxkj.

A quick check by matrik multiplication shows that in fact

Xikaj = Xij independent of k, summation over k not-implied.

The right -hand side of the equation may now be written

1

= : * 1 1 u'
= Xy / L |TT jk(uo,u ) Tikg g (MWl S
2]

In matrix form we have proved

£l

(U3UO) = X-}Eﬁ* - LI .(U'o,l-l)

=
g
o
™

1

In a similar manner we may show .that

\/—\

T (UsUo) = Y#TT¥ * TT, (Ug,H).

[
I=
[}
™
=

P
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Thus we need only compute one of these sets of terms in
full before the other becomes known.

The proof that the symmetry properties of SS and TT for
single scattering continues to hold true for multiple scattering
can be done with considerations such as those above. FEach of the
terms (or pairs of terms as noted above) in the doubling equa-
tions must be examined to show that they have the same symmetry
properties as the matrix on the left hand side. Then if the
optical depth of the 1nitial layer is taken to be small enough
so that single scattering prevails to any degree of accuracy,
we may show by induction that the single scattering symmetry
properties hold true for any optical depth and hence for multiple

scattering.



VI. A Collage of Time Saving Devices

The doubling équations which we have derived still need
much discussion if we are to use them intelligently. There is
still much we can do to reduce the. time required to execute the
computer program. The interplay between time and accuracy is.
the game we shall play. In this section we shall develop a
method to significantly reduce computation time with no sacri-
fice in accuracy through the removal of single. scattering from
the computations. We shall discuss the effects of the number
of fourier coefficients used, the number of Gauss points and the
number of ¢ points used in the fourier analysis. We shall also
discuss the effect of making thevinitial and final optical
depth a function of the number, m, of each. fourier coefficient.
We will find it useful to define a generalized single scattering
albedo &om which will help us gauge the importance of any fourier

component in.the final answer.

Generalized Single Scattéring Albedo

The single scattering albedo as generally defined is just a
measure of the ratio of the energy scattered to the energy inci-
dent 1in. any scattering event. 1In terms of.our notation it is

2m p,(6) + p,(6)
1.42 o = 3 f f: (-+———5—2-") sin 6d6ds.

If we express @, as an integral in u,u',¢ space of the fourier
analyzed phase matrix we find that only the'lSt fourier matrix

glves a non-zero contribution.

51
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We have shown how to get ggm and %%m. If we let Egﬁ and
%%2 stand for the matrilces unadjusted by the coefficients that
converted them from a phase matrix to scattering and transmission
matrices (see equation 1.18) then the set {ggg, %%g} represents

the fourier analysed phase matrix. SSE

and TTS represent re-
spectively light scattered in the backward and forward hemis-

pheres. In terms of the phase matrix ﬁ of equation 1.14,

2
Bo(w) = 3= " [ R(u,u',6'-¢) duds'

Here, and similarly in what follows, unbarred terms like R mean
(R11 + Ri2 + Ra1 +R22)/2, a representation of the scattered

intensity for unpolarized light incildent.
A 1 ZTT ! ] 1 1 1 1 1
w_o(u) = HJO fo {8 (usu',97=¢) + T (u,u',9"=¢)} du'dé

where the u stands for unadjusted by the coefficients of equa-
tion 1.18. Now writing Su and Tu In terms of their fourier
coefficients according to the formula of equation 1.26, -and

2T
noting that f cos m¢de = 0, m F 0
(o]

1
1.43 Wo(u) = f  {88° (u,u') + TT°  (u,u')} du',
[o]

We have written mo(u) although theoretlically we would
expect Bo(u) = Bo, a constant. But what we have 1n practice
is a measure of the accuracy of the fourier analysis, and the
gaussian integration. If we have chosen too few ¢ points to
accurately describe the phase matrix or if we are using insuf-

ficient gauss points in the integration, the defficiency shows
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up most markedly in.mo(u). Experience has shown that a very

good feel for the accuracy of the doubling computations can be

' [AVE
gotten from the degree to which-xo(u) departs from w,. Unhap-

pilyvmg(u) depends upon 2 parameters and. there is no easy way
to separate theilr effects other than vary each one separately.
In practice both were varied together according to intuition
based on limited experience.

Equation 1.43 leads immedlately to the generalization for
m+ 0.

1
Lok BRG0 = S s Guun| + Tl Lo |3 e

The absolute value signs grew out of the fact that the.
second fourler coefficient for rayleigh scattering (m=1) gives
m;l(u) = 0, although each term by 1tself produces a non-zero
integral. 0ddly enough the answers are the same with or‘withouf
the absolute value signs for all non-raylelgh scattering'lawé
tested.

Clearly B?(u) does not have the same physical meaning as
the m = 0 term. For m ¥ 0 we find that it is not a constant
but a function of u (as advertised). Just the same, however,
it can serve as a guide to guessing three other accuracy par-
ameters -- specifically M, the number of fourier terms needed,
T?? the initial optical depth for each m, and Tg the optical
depth at which ‘the results for a semi-infinite atmosphere are
reached.

It .is found that <$?(u)>, an eyeball average over u, de-

creases with increasing m. There are exceptions to this rule,
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but the deviation from monotonic 1s usually small. Since the
doubling equations for each m takes no note of the value of m
we expect that statements made about the effect of Bo on the
importance of various orders of scattering carry over to some
degree for <B?(u)>.

Since 8 of the 16 terms are zero for m = 0, there is in

fact a difference. However the doubling equations written for

intensity only contain only cosine terms, none of which are zero
for m = 0, and thus the above statement appears to be more ac-
curate when applied to intensity only. Much of the polarization
is due to simple scattering and this, as we shall see, is dealt
with in a manner that makes M effectively infinite for single
scattering. Then any decision we make on the basis of

<m?(u)> in our choice of M, T?, and Tg will not affect the
polarization any more than 1t does the intensity.

As we have noted <m?(u)> decreases as m increases. This
means that the importance of secondary and higher order scat-
tering diminishes with respect to single scattering. We may
therefore expect that increasing the initial optical depth,

m
T

j» @sm increases will increase the speed of the solution with

little sacrifice to accuracy. Eventually for each optical

depth, 1, of interest an m = M - 1 is reached beyond which
T? = T. Then we only need compute M fourier terms if we account
for the single scattering due to terms m > M. We do this by a

7

method due to Hansen and Pollack for doubling equations in the

intensity only case.
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- m-1 — —_
1.45  F(T;u,ut;er-¢) = Zo SST(TsH,u" )-S5 (T5u,u")
m:

cos
sin

m(¢'-¢)

+ §S(T;u,u';¢'—¢) s

where SS ils the scattering matrix due to single scattering at
optical depth T, and'{Ssz} are the M fourier components of Ss.
Equation 1.45 permits a reduction in computer time by as much
as a factor of 4.

The decrease of <B?(u)> with m permits additional time to
be saved for calculations to large optical depths. The approach
fo a semi-infinite atmosphere is achieved at T 2 8 for all m > 0.
Terms with u,u'»0 approach this limit at lower optical depths
than terms with u,p'+l. Radiation entering or leaving the
scattering layer near normal incidence is much more likely to
feel the effect of deeper particles then radiation at grazing
angles which 1s affected more by single scattering in ‘the
upper layers.

Not. all of the values in fourier scattering arrays contri-
bute significantly to the integrations in the doubling equations.
In the case of "Intensity only" equations we. find that as m
increéses terms with u,u'-»0 are much larger than u,u"+1l. Thus
we may decrease the number of gauss points actually used in the
integration, Km’ until as m >+ M only the terms with u,u’ N0
are used. _With the addition of polarization the situation is
more complicated, although the same time saving method is valid.
For.m = 0 we have in fact (u,u'+1)>>(u,pu'»0) for all 16 terms.

As m becomes large this trend reverses itself to become
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(u,u'>1)<<(u,u*+0) for all 16 terms. The complication arises
because each of the 16 terms does not reach thils limit in the
same way or at the same rate. Polarization calculations, it

appears, require more care in the selection of Km then do

intensity calculations.
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Part II

THEORETICAL CALCULATIONS OF DISK INTEGRATED AND DISK

RESOLVED POLARIZATION OF PLANETARY ATMOSPHERES

Abstract

The theory developed in Part T 1s used to calculate the disk
resolved polarization of model atmospheres as a function of
phase angle. The theory of the integration of the Stokes
parameters over the illuminated disk of the planet 1is pre-
sented. The polarization as a function of position on the
disk 1is shown superimposed on the planetary disk drawn for
various phase angles for three different types of phase
matrices, including the Rayleigh phase matrix and one that-
matches the phase varlatlion of Venus at 1 micron wavelength.
Comparison of the disk revolved Venus observations with
calculations is good. Disk integrated results are given

as well. The effect of the single scattering albedo of the
scatterers 1s investigated. The polarization observations
of Venus and Jupiter are discussed in the light of general
principles that have been inferred from examination of the
results of the model calculations. Disk resolved polariza-

tlon observations may be an unharvested field of useful
information.
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I INTRODUCTION

Most of what we: have learned about the planets has
been- learned from the light they reflect. By far most of
the efforts to understand the planets to date have concen-
trated on some aspect of the refleected intensities. The
polarization of the light has. gone by comparatively unexplor-
ed by observer and theorist alike. This gap in our knowledge
was caused by a singular lnability to interpret the observa-
tions. We attempt to further develop this capability in the
present paper.

Polarization-iﬂ planetary atmospheres is a difficult
subjJeet to treat. Only recently, with the avallabllity of
high speed eleectroniec computers has it been possible to at-
tempt polarization caléulations at all. The 1nclusion of
polarization in radiative transfer éémputations requires
an 1ncr§asé=in computer time of a factor of 27 to 64 de-
pendinggon.the'algorithm chosen,

The computational expense-of these calculétions has
been - a major factor in determining the content of the work
that follows. It was not possible.to do extensive model
calculations, both becausé-of'the many gomputer runs nec-
essary and thevlack of ‘an 1ntéractive capabllity caused
by the physical‘disfance between the programmer and the

computer. The prbgram:was"designed but never run on an
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I.B.M. 360/65 at Cornell University and run on an I.B.M.
360/91 at the Goddard Space Flight Center in Maryland.

We shall explore the radiative transfer calculations
from the input stage of a single scattering phase function
to the output stage which describes the disk integrated
and localized disk polarizations. Extensive use is made
of the theory and associated computer program developed in
Part I of this thesis. The computations are made for semi-
infinite atmospheres with the single scattering albedo as
a parameter. In addition to the planetary phase angle
dependence of the polarization of the entire planet, we give
many diagrams of the polarization across the planetary disk.
Both the total polarization and the polarization of light
scattered more than once will be explored.

We investigate three different types of phase functions
including the Rayleigh phase function and one that matches
the phase variation of Venus at 1 micron wavelength. The
discussion of the three cases is intended to be instructive
rather t@an exhaustive. The behavior of the polarization
is discﬁésed in detail so that a good a priori knowledge
can be derived for planetary polarization from the single
scattgring information alone. Many observational effects
that at first sight appear strange will be seen to be rather

easlly understood. TheIWOrk here should help to provide
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a basis- for future model calculations.and the interpretation
of future observations; including the Grand Teur-observations
of the outer planets.

The next two sections describe the. computational pro-
cedure; section IV gives.the results. for the-three cases
studied; and section V discusses some:of the observations

"in 1light of what was learned.-in section IV.



IT -POLARIZATION.AS A FUNCTION OF.-POSITION ON A
PLANETARY - DISK~-=-THEORY

It is usual to discuss the results of radiative trans-
fer calculations for plane.parallel layers in terms of three
‘parameters, 6, 8', and A¢ where 6 and 6' are, respectivély,
the angles of emergence. and incidence and A¢ is an azmuthal
coordinate. These are the variables of the scattering matrix
function §(6,9',¢'—¢) that was derived in Part I of this
thesis. Typilcally one coordinate 1s held constant and re-
sults are given 1n the other two eoordinates. The figures
thus produced are rarely capable of being immediately inter-
pretated in a planetocentric coordinate system. With the
addition. of polarization and its . intimate dependence on the
azmuthal coordinate, the usefulness of such figures is re-
duced, for most astronomical purposes. Tables of values
such as those of Coulson et al.. (1960) for a finite Ray-
leigh atmosphere require extensive-interpolation in one,
two, or three dimensions.to.deseribe the state of polar-
ization of light reflected-from a given 'spot-on the disk
for a given planetary phase angle.

In.this section, therefore, we will show how to des-
cribe the intensity and polarization of light reflected
from a planetary disk as a function of phase angle and

position on the disk. By doing this we can gain additional
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Physical insight into.the effects .of multiple scattering,
since the phase angle-of a planet is just 180° minus the
scattering angle for single scattering, ©. Thus every
point.on the disk scatters the-light. to the:observer through
the same angle and the.polarization: due- the single scattering
alone is everywhere the same-aeross the disk.

Before discussing the planetary geometry, let us review
‘the use and meaning-of-the-Stokes'intensity T(0,0',0'-0).
As defined in Part I of this thesis 6 and 8' are angles of
emergence and incidence repectively, measured from the local
pormal. The local normal and the direction of propagation
‘define the meridian planes of emergence and dncidence,
respectively. The azimuth is measured from an arbitrary
direction and is positive in a counterclockwise direction,
when seen from above. (In the éonvention of Part I, azimuth
is measured from the direction where the radiation appears
to have entered the scattering event. This introduces a
factor of m radians in figure 1.4. The convention is the
same- below.) The azimuth of the observer and source are
¢-m and ¢' respectively. Thus propagation back to the
observer corresponds to ¢'-¢ = =7 and ¢'-¢is negative over
the upper disk of the planet shown in- figure 2.1, discussed
below. (The minus sign here corresponds .directly to the

adventitious.decision"to display the planetary disk as a
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function of negative:phase.angles, i;e;, the+earth-planet-
sun angles”of}Venus before inferior conjunction.)

Figure 1.4 of Part I develops the-scattering event in
a non-vlanetary geometry. The direction in the plane trans-
verse to the direction of propagation-in which the intensity
is maximum is called the direction (or plané) of polariza-
tion. It is an angle X measured:in a clockwise direction
from a vector, él’ in the tr;nsverseiplane that is parallel
to .the meridian plane of emergence;,-propagation towards the
observer. See figure 1.1 of Part I for a simple. picture..
The angle is given by
2.1 A tan 2x = U/Q
where U and Q are components-of the- Stokes intensity vector
I[(1,Q,U,V], and

2.2 Q=I ~-1I

where 1 and r refer, respectively,nto directions parallel
and perpendicular to the meridian plane.

The previous discussion while conceived of in terms
of fiéure 1.4 should now be reread when considering figurg
2.1 which give a picture of the geometry of scattering‘
from a planetary atmesphere seen-at a phase angle ¥ = m-0 s
where © is the scattering-angle of the single scattering
phase function. The subsun point is at S, the subearth

point at E and the scattering takes place.at-P. Vectors
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él = fi and ér are parallel and perpendicular to the plane
of emergence and lie in the transverse plane. The angles
0, 6' and ¢'-¢+m are clearly indicated. Angle e at E can
be considered a planetary azimuth coordinate since when
viewed along EO all great circles beginning at E appear

as radial lines. Vector él, parallel to the plane of
emergence, 1s therefore radial as viewed by the observer.
Thus angle X, the polarization direction, is measured from
the radial direction as seen by the observer.

The geometry of angle ¥ once.again points up the
difficulty of obtaining a physical insight from graphs of
X versus 6,0', or A¢. For example, if the polarization is
everywhere normal to the scattering plane EOS, x varies
across the disk, even though .the guantity x-e-is-a constant.
It was decided therefore to display the computer results
as a function of e and 6. The printed output gave the
quantities: x and x-e as a function of e and.6. When the
polarization is radial x = 0; when it i1s tangential to the
limb x = £7m/2. On the other hand when x-e = 0 the polar-
ization is normal to the scattering plane; when y-e = +71/2
it is paraliel.

Positive (or negative) polarization is a term that
suffers from some ambiguity. It is usually meant to ex-
press the fact that the electric vector normal (or par-

allel) to the scattering plane is greater than the par-
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allel (or normal) vector. It is a term that.is unambigu-
ous infthe context of single scattering, for then.no planes
are defined besides the, K scattering plane. In the context

of a planetary atmosphere, however, the.meaning of the term
is confused by the presence of the plane of emergence, with:
respect to whose direction the polarization is measured. We
then may mean radial when we say positive or tangential
when-we. say negative. To avoid confusion we will henceforth
qualify "positive" or '"negative" with "radial" or "tangen-
tial'" whenever necessary.

Also note that for single scattering the polariza-
tion across the disk can be only positive or negative,
whereas for multiple scattering it can be positive, nega-
tive, radial positive, tangential negative or anything in
between, although these cases are by‘far most often encount-
ered observationally and theoretically. On-the other hand
the polarization integrated over é uniform sphere must again
be either positive of negative because then only the earth-
planet-sun plane is defined.

It remains now to detail the.equations for the degree
of polarization, P, and the direction of polarization Y.

The degree of polarization at (e,6) is a mathematically
positive quantity and is given by

1
(Q% + U?% + v2)>2
I

2.3 P =
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I, Q, U, V are the four components of the Stokes vector.
The degree of linear polarization, PL’ is what we usually
measure however.

(Q2 + U2>%
I

2.4 PL =
PL ~ P for the cases that we have calculated, the degree
of circular polarization, PC, usually being small.

2.5 P.= =

The polarization direction for linear polarization is giv-
en by equation 2.1.

Before ending this section it is necessary for com-
pleteness to describe the transformation (0,6',A¢)>(e,0,Y¥).
We also discuss the interpolation necessary to derive

T(e,0,¥) from 1(6,6',Ad), the output of the computer pro-

gram.

Spherical geometry gives

cosY = cos6® cosB' + sin® sinb!' cos(¢'-o¢+m)
2.6 = cosfO cosB' - sinb sind®' cos(Ad)
Ap = ¢' - ¢
Also,
L

2.7 cos(e) = cosb cos® cosY

sinB6 sinV
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A set of (8,8',A¢) points is then related to a set of
(e,0,¥) points. Thus I(e,0,¥) is known, but not necessar-
ily at the e ,,¥, points desired. We must therefore inter-
polate in 2 dimensions in e,¥Y space to obtain the results
at e ,¥,. We now discuss such a scheme.

We are handicapped by the fact that e,¥ space is
not uniformly filled with known points. This has. two con-
sequences. First, none of the conventional interpolation
schemes will work. Second, large errors are introduced at
place where the data. is sparce;

The interpolation scheme we employ here is a modi-
fied Lagrangian interpolation. The method produces a func-
tion of two variable that is restricted such that it passes
through the 9 points nearest to the required point. The

formula is

3 3 3 (eo_en) 3 (W°_Wm)
fleo,¥o) =) ) ‘f(ei,Wj)x H. X H. _
i=1 j=1 n#i (ei—en):m#J (wj-wm)

Equation 2.8 produces quite reliable results. It
appears that 32 is the optimum number of points for a good
fit, because more points introduce uncontrolled spurious os-
cillations of the fitting function. The results from equ-
ation 2.8 degrade considerably when either or both réQuired
points are outside the known grid of points. Thils occurs

at the limb of- -the planet and at large phase angles.



IIT POLARIZATION AND INTENSITY INTEGRATED OVER THE DISK
OF A PLANET-THEORY

The theory of the integrated diffuse intensity of
a planetary disk is well known. The addition of polariza-
tion considerations complicates matters by requiring a ro-
tation of the coordinate system at each point on the disk
before the standard equations may be applied. We shall
discuss below the integration of the Stokes quantities ov-
er the disk, as well as the algorithm used to produce the
computer code.

To perform an integration over the disk we must
first rotate the coordinate system in which the Stokes
vector is defined into one that 1s independent of the pos-~
ition on the disk. Let this new coordinate system be the
directions in the transverse plane of figure 2.1 that are
parallel and perpendicular to the scattering plane EOS.'
The axes of observation must then be rotated by m/2-e=p in
a counterclockwise direction. The effect of rotation of
the coordinate axes is to subject Tb, the Stokes vector in

the coordinate system defined at P, to the transformation

I 1 0 0 0 Ip

Q 0 ~-cos2e -sin?le 0 Q

2.9 = P
U 0 sin2e -cos?e 0 Up

A% 0 0 0 1 \Y)
o
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Only integration over the upper half of the disk is
required if we include the result that integration over both
halves yields U = V = 0. Every point Pu on the upper half
has a mirror point Pl on the lower half with & and ©' the
same, but with a difference in sign in the angles e and
The Stokes parameters I and Q are even functions of A¢ but
U and V are odd. (See Part I of the thesis). The result

of adding the Stokes intensity at Pu and P, i1s, in the new

1
coordinate system,
I 1 0 0 0 Ip
Q 0 -cos2e -sin?e 0 Q
2.10 =2 : P
U 0 0 0 0 Up
v 0 0 0 0 vV
P

Note that we would only expect to observe circular polariz-
ation, the V term, if the observations were to be made over
half the disk.

The rest of the treatment of the disk integration
can now proceed along well traveled paths. The only refine-’
ment 1s that we write Ii in place of I in the standard equa-
tions, where I1 = I and 12 = Q. Below we shall briefly dis-
cuss the Bond albedo, AB, the geometric albedo, p, the phase
integral, q; and the phase variation of 1ntensity, p(¥).

The Bond albedo 1s the measure of the total ‘energy

reflected from the planet and equals the ratio of the total
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energy reflected by the planet to the total energy incident.
The derivation of AB will not be pursued here since many
sources are available for a complete discussion (most re-

cently, Kattawar and Adams, 1971). It is

2.11 Ag = p1(0)q

where

1 1, 1
2.12 p, (¥) = %F(cosw + l)Jo (1-B*)*aB J_lli(B,E)dE

where B cosn

and £ = 2sing + (cos¥-1)

(cos¥+1) (cos¥+1)

and n and ¢ are related to © and &' by the equations

cosb! sinn cos(z-Y)

cosh sinn coscC

The phase integral used in equation 2.11 above is defined as

_ 2fﬂ p1(W)
T o)

The angles ¢, n, and ¥ are defined in figure 2.1.

2.13 sin¥ av.

The degree of polarization at any phase angle Y, is

then
p2(¥)

pi1(¥)

Note that since U = 0 the direction of polarization can be
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only perpendicular or parallel to the scattering plane, cor-
responding to whether PL is positive or negative respectively.
This is the same property displayed by single scattering |
from a sphere, and indeed, the planet may be regarded as
a very large uniform sphere in no way different in scatter-
ing geometry from.the particles of which it is composed.

The algorithm developed to evaluate equation 2.12 was,
it turns out, not optimally conceived. The accuracy of. the
results 1is not as high as would be expected considering the
number of integration points used. The accuracy will be
discussed at the beginning of section IV. The failure to
iterate on the integration scheme was the resul£3of the
physical distance between the computer used tg develop the
program and the computer used to test and run it. Accuracy
tests were not possible at Cornell.

The integration in (£,B) space was performed using
only those points on the disk that corresponded to the
Gaussilan points in the variable W at which the functions
were known. This left u' and A¢ free to follow the path
of integration. Two dimensional interpolation in these
variables was necessary at every inﬁegration point. The
integration was performed in two steps. First the inte-
gral was evaluated over B--i.e., over angle n in figure
2.1. Parabolic sections were fitted to the_points along

NPL ( the line of longitude through P ), and the integra-
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tion performed analytically. The integration over & was
done similarly. Only those & values were used that corres-
ponded to cost = U, where U is a Gaussian point, thus insur-
ing that the integration over B included a point on the equ-
ator.

This scheme was deemed preferable to a three dimen-
sional intefpolation which would be necessary to find the
values of the functilion at points dictated by a sophisti-
cated quadrature scheme. Xattawar and Adams (1971), for
example, use Chebyshev polynomials of the seccnd kind over
£ and Legendre-Gauss quadrature over B. They do not indi-
cate, however, how they evaluate the functilions at these
points. It is possible that the integration scheme des-
cribed here can be improved, but it is adequate for many
planetary atmosphere problems.

The integration over the disk was checked using a
code that does not require interpolation and gilves AB and
p = p1(0) very exactly via Gaussian quadrature. Thus g is
accurately known and the integral of pi1(¥) in equation 2.13
may be checked against a more exact value.

After the definition of p given by Russell (1916),

p is the ratio of the observed brightness of the planet at
full phase to that of a flat disk of the same size illumin-

ated and viewed normally and reflecting all the incident
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light by Lambert's law. Thus

2T :’l
Jo ‘Jo i(u=u';¢'—¢=ﬂ)r2UdUd¢‘

2.15 p =

Tr?F
4u

and hence

I}

1 .
2.17 P %fo S(uldu

(This is a factor of 4 smaller than the radar cross sectilon
of a planet with the same scattering function.) The inte-
gral in equation 2.17 can be formed accurately since the
points required for the Gaussian quadrature are just those
points at which the function was calculated.

The Bond albedo is the integral over all positions
on the disk of the energy flux reflected into all directions

from each point, divided by the incident energy. Thus

21T . 1 27 1
2.18 - Jo dSJo r*du’ Jo d¢Jo I(u,u',¢)udy
B Tr?nF

From equation 1.26 we have

N
F F m .-
2.19 I =718 -= Y SSTe(4-284")+cos(me)
B TR Om

Only the m = 0 term survives the integration over ¢.
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Equation 2.18 reduces to
1 (1
2.20 Ag = 2[0 JO SS° (u,u')dudy’

This again is accurately computable by Gaussian quadrature.



IV REGIONAL AND DISK INTEGRATED POLARIZATION-RESULTS

This section represents a set of tentative steps
leading to a fuller understanding of polarization in plan-
etary atmospheres. Until now, no theoretical work has
shown the distribution of polarization over a planetary disk,
and the appearance of the disk.in polarized light was virtu-
ally unknown. Those measurements that have been made have
had no theoretical framework with which to compare, and thus
a wealth of information goes uninterpfeted, unsifted for pos-
sible information content. It is hoped that the discussion
here will help to provide a basis for understanding some of
the more general polarization effects displayed by a planet-
ary atmosphere.

Unfontunately, it was.not possible to make a comprehen-
sive survey of the effects of different phase functions. The
polarization program requires about 4 minutes for the Rayleigh -
phase function and up to 15 minutes ‘or more for the forward
scattering phase functions studied. The computations were
performed on an-I.B.M. 360/91 (a very fast machine). Compu-
ter time allotments limited the number of times the program
could ke run and the physical distance between the programmer
and the computer limited the number of iterations. Thus the
sample of phase. functions studied is not comprehensive. It

is hoped that it 1s representative.

17
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We have chosen to display below both disk integrated
and disk resolved results for three phase matrices, selected
from a larger set of similar phase matrices with differring
Wo's. In each of the following three subsections we give
these comprehensive results as well as displaying the varia-
tion of the disk integrated quantities with &,. Both the
total light scattered, designated by "T", and the multiply
light with single scattering removed, "M", will be investi-
gated.

The three phase matrices A, B, and C will be discussed
thoroughly in their respective subsections. Briefly, Case A
corresponds to Rayleigh scattering; Case B to a forward scat-
tering phase function the polarization curve of which exhi-
bits two neutral points between 0° and 180°; and Case C to
a forward scattering negatively polarized phase function
which matches the disk integrafed polarization of Venus at
1. micron wavelength.

A complete table of A, p, q, a/p(50°) (Russell's rule)
for all the calculated cases as a function of &, is given in

the Appendix.

1. Accuracz

Rayleigh scattering for T = 1 was compared with the
tables of Coulson et al.(1960) with agreement to four places.

The doubling program was also checked by comparing the results
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for an arbitrary phase function with the results obtained
by Hansen (private. communication) for the same phase function.
There again the agreement was to better than U4 places, al-
though Hansen's computer program was derived independently
using the doubling method originally suggested by Van de
Hulst (1963). At -the Gaussian points we expect an accur-
acy of *0.01% in the percent polarization. Interpolation
over the disk gives an accuracy of zl.OS for polarization
greater than 0.05%. This was estimated by noting that the
interpolated single scattering polarization should be con-
stant over the disk. Integration over the disk is accuréte
to 21.01 or *0.2%, whichever is higher, for 0<¥<140°, and
:1.2 or *¥1.0% for 140°<¥<160°. Beyond 160°, we do not ac-
cept the integrated results at all. Disk integrated accur-
acy was. estimated by internal checking and by comparison with
the table of Kattawar and Adams (1971) for disk integrated
Rayleigh scattering for T = 10 # ®. All error estimates are
approximate since they depend on the phase function beilng
studied as well.as the phase angle and position on the disk.
Rayleigh scattering with @, = 1 gave a Bond Albedo of
0.99 not 1.0 as WOuld_be expected. This 1s the product of
using single precision arithmetic with only six significant
figures and the loss of accuracy associated with dividing by

the difference of two numbers quite close to unity when W, =1.
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Figure 2.2 shows the phase variation of Venus at 1B
as calculated by Hansen (1971) and myself. Input paramet-
ers to the Mie program were supplied by Hansen, and ®, was
chosen to match the Bond albedo of the planet following
Hansen's method. The comparison, however, can only be con-
sidered approximate, for Hansen later modified his best fit
parameters in the published graphs. Figure 2.2 lends great-
er confidence to the results below. The solid line is Han-
sen's results, the circles have been calculated here and
the data points give_the observations of Coeffen and Gehrels

(1969).

2. Results

A The Rayleigh Phase Matrix

Rayleigh scattering is the most thoroughly worked area
of radiative transfer theory, with the exception of isotropic
scattering. It holds this distinction both because it has
the simplist realistic phase function (requiring only 3 Four-
ier components and 6 Gaussian quadrature points for compar-
ison with Coulson et al.'s(1960) tables) and because it is .
the case to which the phase function of any scatterer returns
as the wavelength is increased. It 1s also important at
short wavelengths for the upper molecular layers of many
planetary atmospheres attain appreciable optical depths in

the ultraviolet,
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Polarization (%)

L Hansen (calculated)
o Whitehill (calculated)

-8 e Coffeen.(observed)
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Figure 2.2 The disk integfated polarization -of Venus at 0.99 u as observed
by Coffeen and Gehrels (1969a), as calculated by Hansen (1971) and as
calculated here using preliminary parameters supplied by Hansen.
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Treatments of Rayleigh scattering range. from the analy-
tical discussion by Chandrasekhar (1960) to a set of tables
for the three non-zero Stokes parameters published by Coulson
et al. (1960). Faster computers capable of handling more com-
plex scattering functions have led to a decreased interest
ianayleigh scattering, and yet the ease 6f data handling
that these. computers provide has increased interest in disk
integrated Rayleigh.calculations. Hansen (1971) published
graphs of disk integrated polarizations as a function of opt-
ical depth. In a more extended treatment Kattawar and Adams
(1971) have published tables of disk integrated polarizations
and intensities as a function of optical depth and ground
albedo.

To the body of knowledge~on Rayleigh scattering we add
below the polarizations across the disk of a semi-infinite Ray-
leigh atmosphere. Results at selected phase angles and non-
unity single scattering albedos are-also included. Concur-
rent with the multiple scattering figures is a set of figures
with the single scattering removed, included to dispell the
convenient but incorrect idea that light scattered more than
once 1is unpolarized, as well as to better understand the ef-
fects seen in the total 1light.

The figures. showing the Rayleigh planetary disk are

given at- the end.of this subseetion. Figures 2.4 - 2.13
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show the percent polarization:and direction of polarization

for a single scattering albedo, ®,, equal to 1 for phase angles
from 1° to 160°. The upper figureé give polarization of the
total light, T, scattered from each point whereas the lower
figures give the polarization of the light, M, that has been
scattered more than ohce.

Figure .2.14 - 2.19 show the influence of ®,. The up-
per and lower figures correspond to W, = 1.0 and &, = 0.9,
respectively, for T light.. Figure 2.20 gives the T polariza-
tion for W, = 0.99 at the largest phase angle run, l?Ob.

A word about the graphical;repreéentation. The polar-
ization at a gilven point Q is given by the length of the arrow
that begins at Q...Q is indicated.by a small + sign. The end
of the arrow has a small arrowhead. which begins after the
length corresponding to the.polarization. At small phase
angles where the polarizatien is small near the center of the
disk, a portion of the physical disk has been removed and re-
placed by an insert with an.expanded scélé. The scale of the
percent polarization changes with. phase éngle, but an attempt
has been made to keep the scale relatively constant for a
range of phase angles.  The points at which data is present-
.ed changes with. phase angle.- This accecounts for anomolies
that are sometimes seen when a point wanders too close to the
limb or:pole. The*points.were-ehosen,according;to.theffollow-

ing scheme: For a gilven value-of..6.(corresponding to a Gauss-
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ian point) values are given a 7 equally spaced points in the
angle e over the Interval between e = 0 and the value of e
where the circle of constant 6 intersects the terminator or
equator. If the circle of constant 6 interseets the termina-
tor, the interval in e 1s reduced somewhat so that no point
falls on the terminator. The above - scheme accounts for the
migration of data points in the direcetion of the sun's motion
as the phase angle ¥ changes. Another slight modification
may be noticed. For small phase:angles-and. radial polari-
zation angle e was shifted by a maximum of 5°, the shift in-
creasing as 0 increases. This inerease the visibility of the
arrows somewhat,

The scales of the drawlings were chosen for rapid
comprehension rather than maximum data content. Each draw-
ing 1s accompanied by a scale whose physical length does not
change 1n any of the  figures. The value next to the scale
indicates the percent-polarization corresponding to the
scale length. The center of the disk is drawn to an ex-
panded scale for many figures at small phase angles.

The drawings were produced on a Calcomp Plotter from
data punched by hand on cards. The plotter can only draw lines
in one of elght directions so that. lines. at other angles must
be drawn as combinations of small sections of lines in the quant-

ized directions. This produces breaks in the lines which de-
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grades the accuracy somewhat while at the same time providing
a visual guide to the- departure of an arrow from true vertical
or true horizontal.

The polarization . for T and M has been:normalized to
the value of the respeetive intensity due to T or M. This
has the advantage of showing the polarization caused by sec-
ondary scattering alone, but has the disadvantage that the two
flgures for T and M at a given phase angle are not additive
without the addition of a multipliecative factor at each point.
Normalization to the- same-intensity would be preferable, but ‘
this d1iteration was: not performed.

Let us describe:the general behavior of-the T polari-
zation as Y increases. Subsequently we-will discuss and explain
the points-raised here, as well:as:-the -behavior of tﬁe M pol-
arization. .The figures for T and M are-drawn-to-the same scale
+in- all cases. It will be helpful. to the reader to glance through
the flgures now and during - the discussion.

Starting with figure 2.4 for ¥ = 1° we see that the
polarization is everywhere radial;-and definitely non-zero,
contrary to the expectations of.soﬁea It is only as a result
of the disk integration. that the polarization approaches zero
at zero phase...The percentage. increases- radially outwards,
reaching a maximum of abeut 8% at a radial distance of 0.97
and .then decreases-to:zero.at the-limbs. The  M: polarization

is-.also radial:but increases:menetonically at the limb is ap-
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proached, achieving an average maximum of 30%. As the phase
angle increases the polarization begins to change from the
situation at zero phase, the change spreading outwards from
the subearth point. At ¥ = 12° we begin to notice that the
polarization at the center of the disk has increased and is
becoming perpendicular-to the earth-planet-sun plane (the
equatorial plane in the figures). This continues until at

¥ = 60° the directions have become virtually. perpendicular to
this plane and the percentages have become more equal over
the disk, with the edges:of the illuminated disk still pos-
sessing the strongest polarization. The absolute maximum 1is
approached at the pole. The polarization everywhere increases
monotonically with ¥ until a maximum is reached near 90°, the
scale reduction from 60° to 120° masking this somewhat.

Beyond 90° the polarization decreases again, while be-
coming increasingly radial at the center of the illuminated
cresent, the radial nature spreading to the terminator and
limb as ¥ increases. At 160°, the largest phase angle cal-
culated for W, = 1, the appearance is mostly radial with the
exception of an area very near the terminator.

The scales for 60°-120° and for 140°-160° are reduced
by factors of 0.16 and 0.44 relative to the scale from 1°-30°.
The 1nserts are enlarged by 4.0.

The pictures with single scattering removed, M, are

similar to the T pictures but show an increased tendency to
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the radial direction at all phase ahgles. For ¥ = 160° the

M polarization is larger than the T polarization, but it
should be remembered here that the. actual intensity is great-
ly diminished; What can be learned from all of this? We are
most interested in what we can generalize to all phase func-
tions. The discussion below has in fact resulted from a
comparison of this case to two distinctly non-Rayleigh cases
which we discuss later. Thus there is a high probability
that the general points we make are truly general. The dis-
cussion, in places, relies on a simple.picture of secondary
scattering and to thils extent we are treading on soft ground.
Understanding multiple scattering and its profusion of 4dif-
ferent scattering geometries in successive scattering events
1s not easy, and we shall be content 1f our simple explana-
tions are sufficiently'indicative.

Before we begin let us make a few points about polari-
zation in general. The maln point we wish to emphasize is
that the arrows we have drawn are arrows, not vectors in the
usual sense. Thus for light of the same intensity and degree
of polarization, two arrows at right angles cancel and two
parallel arrows add to one of the same length. If these
arrows make an angle of X1 and X2 with the meridian plane of
emergence the resulting polarization is reduced by the factor.
cos(x1-X2). Percent polarizations cannot be combined unless

the intensities are known as well.
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One further reminder: The scattering matrix S where
T = S'F/bu has 16 components, 8 of then even and 8 of them
odd in A¢. Thus we note, from the discussion in Part I of
the thesis, that for unpolarized light incldent, I and Q
are cosine functions of A¢ and U and V are sine functions.

This brings us to the radial polarization at small
phase angles. At every point on the disk then ¢'—¢+m , the
angle between the earth-point point-sun lines (see figure

2.1) , is close to zero yielding U = 0. Now
2.21 tan 2x = U/Q

so that X = 0° or 90° depending on whether Q is positive or
negative respectively. x is measured from radial lines
drawn from the subearth point and so the polarization is
either radial positive (X=0°) or tangential negative (X=90°).
We will discuss the choice between radial and tangential
shortly.

Another equally wlid though less mathematical point of
view is that at zero phase angle no scattering plane is de-
fined and the only defined directions are radial lines and
concentric circles. The direction of polarization is thus
determined by symmetry. We shall see that we have a very
good measure of what we mean by the ambiguous term, "degree
of symmetry" in

2.22 (1-sin A¢) = s
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where s 1s &fined as the symmetry factor. At zero phase
s = 1 across the disk.

The question now is why radial positive rather than
tangehtial negative. A hint of the answer 1s in our deci-
sion to use the words positve and negative in reference to
these directions. The answer will be found in the second-
ary and multiple scattering and the fact that the polariz-
ation of the single scattering phase function is positive
at all scattering angles. We discuss. this in detail below.

The polarization at the center of the disk must be
zero at zero phase. At the limbs it must be zero as well
since the glancing angles of incidence and reflection insure
that only single scattering is important. The symmetry of
single particle backscattering implies that light scattered
back in the direction of incidence is unpolarized if the
scatterers are spherical. Thus another question, implicit
in the previous question, is why there 1s any polarization
at all at zero phase. This too is a result -of multiple
scattering, as we shall see.

Let us try to describe a secondary scattering event.
Consider a point on the disk P a distance 6 from the sub-
earth point E at a phase angle of zero. The scattering
geometry is shown in figure 2.3 and 1s observed from above
the subearth-subsun point'E;S. We assume. for simplicity

that all secondary scattering at P arises from points along
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Figure 2.3 Geometry of a simplified set of secondary scattering events at
phase angle ¢ = 0. Light is initially incident at A, B, C, D, and P'
and is scattered again at P. The short lines normal to the radii from
P suggest the direction and magnitude or the polarization of the light
scattered from A, B, C, and D toward P for the Rayleigh phase function.
Distance P E corresponds to 6 as in figure 2.1. Angle y at P! between

~ the observer and P' P.is not shown.
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concentric circles around P lying at or near the. surface.
ABCDA is one such small éircle. The illumination at any
point P' on the circle. is the same and arrives making an
angle © with the local normal. The light is scattered once
at P' though an-angle Y (not shown, due to the geometry)
and arrives at P polarized due to the scattering at P'. The
magnitude and direction of the induced polarization is in-
dicated on the figure fof 4 selected points A, B, C, and D.
Rayleigh scattering is assumed.

The light is sattered again at P through an angle Ty,
and the,polarizatioﬁ is-changed once more. If it is realized
that for both scatterlng events at P' and P the plane of pol-
arization is normal to the plane of'the paper through P'P
then it is apparent that the light emerging from P will be
polarized perpendicular to P'P for positive polarization at
P and P'. As P' moves about the circle the scattering angle
Y goes from a minimum of m/2-8 at C to a maximum of m/2+6
at A passing through m/2 at B and D. At m/2 the polariza-
tion is a maximum for the Rayleigh phase function. Thus
we see that-the polarization induced by secondary scatter-
ing lies in a radial direction.

We can seemw also why the polarization increases as
we move away from the center of. the disk. Near the center
of the disk the range of scattering angles decreases and

approaches m/2 for all points P'. Then the polarization is
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more nearly equal at A, B, C, and D and cancels to a large
extent. At the limbs the cancellation is less effective and
the secondary polarization is large.

A more general point can be made. At zero phase (and,
less accurately, at small phase angles as well) the polari-
zation observed is the result of averaging (in the sense des-
cribed below) the polarization over all scattering angles
from 7/2-06 to ©/2+6, when the plane of polarization and in-
tensity are properly accounted for.

It is not our purpose here to develop these concepts
beyond the intuitive. Yet it is possible to describe math-
ematically the previous discussion and we do so below. The
derivation 1s lengthy and complex geometrically so only the
results are given. Let pi1(Y) and pz2(Y) represent the comp-

onents of the single scattering phase matrix such that

Is} P p2 Ii

s

Q p2 p1 Qi

Then for unpolarized light incident the polarization after

two scattering events as described above 1s given by

2.24 P=Q/I
2T

where I = Jo {p1(Y)p1(m=y) + p2(Y)p2(m=-yv)}da
27T

and Q== {p1(Y)p2(m=y) + p2(Y)p1(T-y)}lcos 26 du



93

and where cos Y sin6é cosa

tan § secH tanoa

o is given in figure 2.3. 6 is an angle similar to o but
measured in the plane of the paper. If P is pﬁsitive the
polarization is radial, and tangential if it is negative.

At larger phase angles we saw the polarization in-
crease most rapidly at the center of the disk all the while
becoming increasingly positive. The.increase in the polar-
ization is due to both single and multiple scattering, and
is too complex to discuss intuitively other than to remark
that we would expect it to change ' from zero. The change in
the direction of polarization.is at first sight difficult
to understand because naively we might feel that orientation
of the direction of polarization to directions defined by a
scattering plane is a single scattering phenomenon and sin-
gle scattering should be smallest near the center of. the disk.
A glance at the T and M figures for ¥=12° and ¥=20° shows that,
contrary to expectations, the orientation change is due to mult-
iple  scattering, the single scattering of course helping as
well as Y increases.

We can gaina better feel for this change in direction
if we look at the "symmetry" of the scattering situation. The
subearth and subsun points; E and S, become increasingly sep-

arated as Y increases. Near disk center the concept of "rad-
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ial" loses its meaning for we must specify radial to what,

E or 8. At the limbs the question is less important because
the polarization can point towards the general direction of E
and S and still retain a radial character. Loosely, we can
say that scattering at the edge of the disk is more "symmetri-
cal" than near the center. Near the center the symmetry fac-
tor s (given by equation 2.22) is variable and not equal to

1; near the edges 1t is nearly 1 at all points.

The symmetry factor works as an intuitive crutch be-
cause it is directly related to U. When s = 1, U, an odd
function of A¢, is zero and the polarization, according to eg-
uation 2.21 must be radial or tangential. U increases most
rapidly near the center of the disk for there A¢ increases
most. rapidly as Y increases. Thus X is not zero, and the pol-
arization can no longer be radial.

It 'is by nomans obvious why U should vary in such a
way to make the orientation perpendicular to the scattering
plane rather than just variable. A general statement that
can be made is that at intermediate phase angles multiple
scattering, even with single scattering removed, remembers
the orientation of the glane of single scattering quite well,
especially near disk center. We shall see this again in the
other two phase functions we have investigated.

At 60° and 90° the direction of polarization is rath-

er accurately perpendicular to the scattering plane, due to
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the large singléAscattering polarization. The M polariza-
tion shows this too, as we have mentioned, but is less. strong-
ly polarized.

The increasingly radial nature at ¥ = 120°,140°,160° 1is
due again to U~ 0 or to s * -1 for all points on the disk.

It is difficult to see, but the change towards radial is slower
at the limb and terminator, due to a competition between sin-
gle and multiple scattering, the single scattering becoming
increasingly important for grazing angles. We shall see a
more vivid example of this in subsection B.

The enhancement of single scattering by grazing angles
of incildence and reflection 1s further emphasized by the pol-
arization enhancements at the poles. There both scattering
directions are grazing and multiple scattering is smallest.

The previous discussion dealt with Rayleigh  scattering
for a single sattering albedo W, = 1. Figures 2.14 to 2.19
compare @, = 1 with W, = 0.9 for T scattering. It is inter-
esting that both sets of figures should be so similar, con-
sidering that the Bond albedo for &, = (1.0,0.9) is (1.0,0.48)
respectively. For W, = 0.9 and small phase angles the polar-
ization is. larger near the center of the disk, the increase.
spreading to the limbs towards ¥ = 90°. Near the poles, how-
ever, the: polarization changes little with &, for all. phase

angles.
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These effects are just the result of the decreased di-
lution of the single scattering polarization by multiple
scattering, where it must be borne in mind that the multiply
scattered component is itself significantly polarized, and is
in fact larger than the singly scattered component over large
portions of the disk.at large and small phase angles. The
dilution 1s greatest near disk center for ¥ 5 0, accounting
for the change there. At intermediate phase angles the sin-
gle scattering polarization is high and the more weakly pol-
arized M component causes less dilution than for &, = 1.

Finally in this section on Rayleigh scattering we deal
with a graph for W, = 0.99 and ¥ = 170°, figure 2.20. This
is included because the recent calculations of Kattawar and
Adams (1971) have shown that the disk integrated polariza-
tion 1s actually negative for ¥ > 164°. Figure 2.20 is the
only computed case which falls in this range. Our own cal-
culations for the disk integrated polarization at 170° gives
a positive value there, but our integration scheme most cer-
tainly 1is unreliable at ;uch large phase angles.

How then can we explain negative polarization from
positively polarizing particles? The answer lies with the
geometry. At Y = 170° the arrows are decidedly more radial
than at ¥ = 160°. For the radial positive regional polari-
zation to yield a posltive disk integrated polarization the

positively polarized intensity (the component Q of the Stokes
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vector) obtained by integrating from the poles to latitude
.i45° must be greater than the negatively polarized intensity
obtained by integrating from latitude #45° to the equator.
But for truly. radial polarization this is not possible, for
there is a greater integrated flux from the equatorial re-
gions than from the poles due to the geometry. Thus posi-
tively polarizing particles should always yleld a region of-:
negative polarization at very large phase angles. A similar
statement applies to negatively polafizing particles. The
phase. angle at which the reversal occurs is a function of
the degree of-forward scattering. For Rayleigh scattering
the reversal occurs-near 164° while for cases B and C a re-
versal. is not yet .apparent at 170° judging from the non-
radial and nen-tangential polarization that is seen in the
figures.

In figure 2.21 we give the disk integrated polariza-
tion of a Rayleigh scatterihg planet of infinite optical
depth as a function of phase angle and single scattering
albedo. For ®, - 0 only the polarization of the single
scattering phase function is important and we have includ-
ed this case for comparison. While the calculations are.
accurate to within, 2% polarization beyond 140°, we do
not- display results beyond 135° because we want to discour-
age comparison. for the purpose of accuracy testing in this

region.
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Both the T and M polarization increase with decreasing
i, because the dilution by the lesser polarized higher orders
is less since their intensity is less.

An unsuccessful attempt was made to derive the multi-
ple scattering results from a knowledge of the single scat-
tering polarization and the total intensity. The interested
reader is referred to Hovenier (1971) for a successful at-

tempt using singly and doubly scattered light.
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(a)
, Total
Polarization

(b)
Multiple f
Minus Single \\ ‘
Polarization \,

33 ' I

——i5% ——20%
Insert

Figure 2.4 Rayleigh scattering across the disk of a semi-infinite planetary
atmosphere with single scattering albedoZBO = 1; (a) gives polarization of
total light scattered = T; (b) gives polarization of light scattered more
than once = M. Length of arrow indicates magnitude of polarization.
Direction of arrow gives orientation of electric vector maximum. A portion
of the disk is shown with an expanded scale. For a more detailed description
see text. Phase Angle ¢ = 1°.
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(b)

b 5% —120%

Figure 2.5 Rayleigh scattering,ZBO =1; (@) =T; (b) =M; y = 6°. HNote
radial positive character. M polarization is non-zero and greater in
fact than the T polarization.
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Figure 2.6 Rayleigh scattering, G,=1; (@) =T; (b) = M; y = 12°. Note
increase at center of disk and associated change towards positive,
( normal to scattering plane).
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—————120%

Figure 2.7 ¢ = 20°. Center of disk is positive, limbs are radial positive.
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Figure 2.8 ¢ = 30°. Increased polarization at pole. Both T and M are

positive at center.
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Figure 2.9 ¢ = 60°. Both T and M have their electric vector maximum normal
to the scattering plane in this view of the planet at a gibbous phase. Note
scale change. Scale changes can be easily followed by noting the length of
the scale does not change for any of the graphs.
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Figure 2.10 ¢ = 90°. At this phase angle, Rayleigh scattering gives 100%
polarization for single scattering.

Figure 2.11 y = 120°. Maximum deviation from positive direction is 9° in

the T polarization.
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—145%

Figure 2.12 y = 140°. Approaching radial positive again, Maximum T deviation

from positive direction is 15°, at center of visible cresent. Note scale

change.

Figure 2.13 ¢ = 160°. Mostly radial positive; more apparent in M polarization

than in T polarization.
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Figure 2.14 Rayleigh scattering in a semi-infinite atmosphere at two different

’J‘»o's. Upper (a) is for'&io = 1; lower (b) is for E)O = 0.9; corresponding‘to

Bond Albedos of 1 and 0.48 respectively. Note striking near equality. ¢ = 1°
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—_i 5% p——" 20%

Figure 2.15 Rayleigh scattering (a) (’I)o =1; (b) &30 = 0.9; ¢ = 12°. Central
portion of disk are most affected by change inaio
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Figure 2.16 Rayleigh scattering (a) &)O =1; (b) mo = 0.9; v = 30°. Central
portions of disk are most affected by change in mo.
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1; (b) &')O

Figure 2.17 Rayleigh scattering (a) B, = = 0.9; ¢ = 90°. Influence
ofﬂso is smallest at pole.
Figure 2.18 Rayleigh scattering (a) &')O = 1; (b) mo = 0.9; ¢ = 140°. Influence

of?I»o is smallest at pole.
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5%

Figure 2.19 Rayleigh scattering (a) & o=1; ()3
of‘&o is smallest at pole.

o= 0.9; v = 160°. Influence

Figure 2.20 Rayleigh scatteringibo = 0.99; T. ¢ = 170°. At this phase angle

integrated polarization has been shown to be negative, although detailed
appearance is radial positive. See text for explanation.



112

. . *addy peferdsTp 29 03 UInous
97BJN008 PAIOPTSUOD 40U OJE oGET = M puokaq _mc.oﬁ,maso.ng. .a.mpoEm.qu ' se oa ‘opagTe JuTJas34e0S
aT3uts U3TM agaydsowe Suras3jeos YBTSTARY 93TULJUT~TWRS B JO uoTjezlaerod pajesdajul NSTd Te°¢ aan3Tg
3lbuo asoyd

ost’  osl o2 06 09 e 0O
do1
=)
<02 %
Z
doe &
8
Ol &
410t ©
660 . e
(9]
dos 2
S60 - . b
A 8
50 oo &
8
80 Joz S
Jos
90
| | | -06
ybisjhoy ‘y osoy - -
| oo~Th Jooi

.5



113

*3T8uR BuTdsqqeOs - 081 = 9Tdue wm,.ﬁ.m ‘g aseo JoJ cogoqa asseud Burasqyeos aT3UTS 22'c 23Ty

, o_mro_ asoyd ‘A _
.08l : oSl _Gel 06 09 o¢ - 0

200

-y
—

-

. ]
v—

-

o

— J ¥ _ LEE T _ J L] _ 1

(uonouny asoyd) Kiisudjul 3ALDIAY




B A Forward Scattering Non-Rayleigh Phase Matrix

This phase function is important because it is the
only one of the three we discuss which displays both posi-
tive and negative polarization, possessing in fact two null
points besides the ones at 0° and 180° (see figure 2.23).
It is also non-Rayleigh and elongated in the forward direc-
tion, as shown in figure 2.22.

The disk integrated polarization also displays two
neutral points, and we shall investigate the disk behavior
near these points. We will see how the direction of polar-
ization is affected by phase angle and position on the disk
for both T and M polarization. We will find that many of
the statements made about Rayleigh scattering apply here
as well, although different in detail.

For completeness we give below some of the details
of the phase function. Its forward elongation is character-
ized by the average of cos® over the phase function <cosf>=
0.84, whereas <cosf> = 0.0 for Rayleigh scattering. It has
a positive polarization at intermediate phase angles, but
is negative for small and large values of ¥. See figures
2.22 and 2.23 at the end of this subsection. Results are
displayed for T = » and an arbitrary choice of &, = 0.997
corresponding to a Bond albedo of 0.73.

The set of parameters necessary to reproduce the phase

function from the Mie theory follows. We chose n = 1.31+40.01

114
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and a distributlon of particle sizes according to the function
2.25 n(a) = AaB exp(-ba’)

the modified gamma functlion used by Deirmendjian (1969) to
describe real distributions. Here we chose B = 1, y = 3 and
b = 1/3. This choice of parameters does not cofrespond to
any of the normally selected cloud and haze particle distri-
bution functions (Delrmendjian, 1969), the distribution func-
tion decreasing slowly for small partlcles, and abruptly

for large particles. The choice resulted from a keypunch-

8 was computed as aB so that the exponent of a

ing error--a
was 1. A choice of X = 2.02 results in an average size par-
ameter o. = 5.00:. (o i1s an average of o = 2ma/)A over n(a)
welghted by the scattering cross section, ﬂazQs, as calcu-

lated in the Mie theory. That 1is

- . fara®n(2)@.(a)da
fﬂazn(a)Qs(a)da

The above parameter cholces result in intensity and polar-
lzatlon phase functions which are quite ordinary, although
more Raylelgh-like than o = 5.00 -would normally imply and
more Rayleigh-like than we desired a priori.

Figures 2.24 - 2.34 show the disk T and M polariza-
tion for selected phase angles. Note that the scale varies
over many of the pictures and that almost nowhere is the
polarization as strong as that for Case A. The polarization
as small phase .angles 1s so small--in fact on the order of
0.1%--that limiting accuracy has been approached. However,
the falrly continuous behavior of the polarization over phase
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angle and disk position increases the confidence in the re-
sults. Typical polarization observations are accurate to
*0.1%.

First let us note those qualities that this scattering
law has in common with the Rayleigh law. The polarization
is radial for small phase angles changlng to vertical as the
the phase angle and polarization increase. Beyond 170° the
polarization is tangential, a result of negative polariza-
tion. Radial or tangential polarization is a result of sym-
metry, as we have sald before. We also see that the change
from radial occurs near the center of the disk first, the
orientation to the directions defined by the scattering plane
becoming better near the limbs as ¥ increases. This was ex-
plained in terms of symmetry properties in case A.

There are many additional pfoperties that did not- ap-
pear on the Rayleigh planet, aside from the behavior at the

neutral points. The polarization stays oriented to the scat-

tering plane, i.e., positive or negative even until V¥ 160°,
whereas we saw a radial character developing near ¥ = 120°

for case A. The explanation for this can be found in the for-
ward scattering behavior of the phase function, which produces
a larger single scattering intensity at large Y. (See figure
2.35, where the disk integrated intensities for cases A and B

are compared.) Note also that the M polarization as well dis-

plays the same characteristics. Since the M light has suffer-
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ed comparatively fewer scatterings to reach the upper bound-
ary of the atmosphere than for Rayleigh scattering, and the
polarization 1s less tangential here (radial, for case A).
This means that the radial character is a result of losing
the orientation of the scattering plane in many scattering
events. It is . interesting to note that secondary and tert-
iary,scattering have such a good memory of the scattering
geometry. We will see this phenomenom repeated in case C.

In view of this, it may be possible to obtain particle
size and composition information from the phase angle at
which a planet gives radial or tangential polarization.

Another phénomenom that was noticed in case A 1s the
averaging qualiﬁy of secondary scattering. This 1s dram-
atically seen here, for in figure 2.36 we notice that the
disk integrated.T polarization is negative for small phase
angles as in the singie scattering polarization (figure 2.23),
but:-the M polarization 1s-positive during the entire negative
branch. The positive polarization comes from the large pos-
itive branch at intermediate ¥'s. The appearance of the
disk near the maximum negative excursion of- the T polariza-
tion is shown in figure 2.26..

Figure 2.27 shows the polarization at ¥ = 15°, near
the neutral point at ¥ = 16°. ‘Figure 2.28 for ¥ = 21° dis-
plays the planet at a point where the single scattering pol-

arization is-almost zero. The polarization across the disk
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at the value of Y where the single scattering polarization
is maximum can be found in figure 2.29. This does not cor-
respond to the maximum in the disk integrated polarization,
which is displaced towards larger Y.

We also include some dilagrams near the second null of
the phase function occuring at ¥ = 123°., At ¥ = 120° (fig-
ure 2.30) the T polarization is zero, while for ¥ = 126° it
is negative. At ¥ = 120° the effect of single scattering
can be seen in. the positive polarization at the l1limb and
terminator (here the phase function gives positive polariz-
ation), while the averaging of the forward scattering nega-
tive polarization can be seen in the center of the disk. The
multiple versus single scattering competition was noted for
Rayleigh scattering as well.

From 123° to 180° the single scattering polarization is
negative and the electric vector maximum becomes parallel to
the scattering plane. We have also included ¥ = 173° where
the polarization, though extremely small, has become tangen-
tial negative. This 1s most visible in the M diagram, but
since the M intensity is small, the T diagram does not show it
on this scale.

Finally in figure 2.37 we gilve the variation of the disk
integrated T polarization with .. As we would expect, the
largest phase angles are least affected by the variation, for

there the multiple scattering dilution is reduced.
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0.17% e OB

Figure 2.24 Case B. Polarization across disk for a forward scattering phase
function as described in the text and in figure 2.22 and 2.23. Note the
greatly enlarged scale as compared to the Rayleigh case. The scale of the
central portion of the disk has been expanded. The single scattering
polarization is negative until 21°. Upper (a) = T; lower (b) = M; Yy = 0°,
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Figure 2.25 Case B. ¢ = 3°., T polarization changes from negative near center
- to radial positive to négative on sunward limb. M polarization, an average

over all phase angles in the sense described in the text, is radial positive.
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0.5% 4 5%

Figure 2.26 Case B. y = 9°. T polarization is negative near center of disk,
yet M polarization is positive. Single scattering polarization is -11% and
becomes increasingly negative until ¢ = 15°; disk integrated T polarization

is -0.1% and peaks here; disk integrated M polarization is +.0.1% and 1is
increasing.
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o——-—————-005% v-——45%

Figure 2.27 Case B. ¢ = 15°. Single scattering polarization reathes a maximum
negative value of -15% here; integrated T polarization is almost zero,

accounting for the chaotic appearence.
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Figure 2.28 Case B. ¢ = 21°. Integrated T = M at this phase angle. Single .
scattering polarization is zero, yet polarization at center of disk is
normal to single scattering plane.
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— b b —

—

Figure 2.29 Case B. ¢ = 42°, Corresponding to maximum single scattering

polarization of 42%. Note scale reduction here and the different scales
in the following figures. '
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31(b)= M

t———41-7% . l—-———-ll"?%

Figure 2.30 Case B. ¢ = 120°. Near second null of phase function at 123°.
The effect of a single scattering polarization of +1% can be seen at limb
and terminator. T polarization = 0%, M polarization = -0.15%. Note
variable direction of polarization.

Figure 2.31 Case B. ¢ = 126°. Polarization.on other side of single scattering
null. Most polarizations are negative.
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—0.83%

————0.5%

Figure 2.32 Case B. ¢ = 144°, T polarization is uniformly negative'although M

polarization shows deviations towards Tangential negative.

Figure 2.33 Case B. ¢ = 160°. Tangential negative charécteristics appear in

M polarization more so than in T polarization.
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———0.18%

Figure 2.34. Case B. y = 173°. T polarization is very small, but tangential
negative. M polarization is obviously tangential negative, but intensity
is very small. ‘
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C Venus at 1 Micron Wavelength

a. Theory

The composition of the clouds of Venus is still an
enigma, despite 2 American and 4 Russian probes to the veil-
ed planet. Water ice, 002 ice and suspended dust particles
have been proposed, as well as a host of other constituents,
among them carbon suboxide, ferrous chloride dihydrate and
polywater (Sagan, 1971).

Recently. Hansen (1971) suggested a model for the cloud
particles which is both startling in its conclusions and pow-
erful in its evidence. He calculates that the particles are
round, hence in a liquid state, that they have a mean radius
near 1 micron and fhat their index of refraction is n=1.45%0.02.
This was derived from a model which fits the phase and wave-
length dependence of the disk integrated polarization.

If Hansen's phase function 1s correct, then it should
also be able to mateh the polarization across the. disk mea-
sured by Coffeen and Gehrels (1969). This would be an addi-
tional test of the model. Alternately, we may assume that
the phase function is correct and look for secondary effects.
Both procedures will be explored here.

A description of the derivation and form of the phase
functlon follows. We chose n = 1.45 and the particle size

distribution according to equation 2.25 with B8 = 6, vy =1,

132
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and b = 8. This gives a mode radius r, = O.75u‘which is
smaller than the value r, = l.1u finally chosen by Hansen
for a best fit. As we saw at the beginning of. section IV,
this affects the integrated results oniy slightly, and very
little indeed at ¥ = 60° and ¥ = 77° where Coffeen has data
at 1u anelength. The wavelength was chosen to be 1u. Funds
did not-permit calculations at other wavelengths observed by
Coffeen.

The single scattering albedo was- chosen using van de
Hulst and Grossman's (1968) similarity relations as a first
and only iteration to give a Bond albedo equal to that of
Venus at 1lu. A choice of @, = 0.9995 gave Ag = 0.91, slight-
ly higher than, but with the error bars of, the value AB = 0.89
observed by Irvine (1968).

| The phase function calculated by the Mie theory for

the above input parameters has an average size parameter of.
o = 6.6, and therefore is peaked in the forward direction.
It is peaked in the backward direction as well so that
<cosb> = 0.69, slightly less than case B which had a smaller
o. Figures 2.38 and 2.39 at the end of this subsection show
the single scattering inﬁensity and polarization as a func-
tion of Y = m - scattering angle.

To discuss the disk polarization we should first note
some. of the features in the single scattering polarization.

The polarization is always negative having a very strong
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maximum = -54% at ¥ = 10°, a relative minimum at ¥ = 28° and
a broad maximum near ¥ = 50°, decreasing monotonically (in ab-
solute value) to 0% at ¥ = 180°.

Departing from our previous procedure of discussing the
disk integrated results last, let us look at figure 2.40 which
shows the results of that calculation for T and M polariza-
tions. We notice immediately that the M polarization does
not have a relative maximum corresponding to the maximum at
¥ = 10° of the phase function itself, although some effect is
seen. This once again is the result of the averaging process
we discussed previously. The peaks in the T polarization are
displaced towards larger ¥ because of this. We may also note
that the total polarization has another maximum, not contain-
ed in- the phase function. This is due to a competition bet-
ween the increasing importance of the forward single scatter-
ing at grazing angles, and the decreasing polarization.

It may be noticed that both cases B and C had large sin-
gle scattering negative polarizations near 10°, yet in case C
the integrated effect is much more prominent. Note also that
the polarization across the disk is much greater near zero
phase for case C than for case B. Averaging over the posi-
tive and negative branches of the polarization curve could
have produced the small polarization that is observed in case
B. It is difficulﬁ to separate the effect of the averaging

process from other causes, however, for it appears that the
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differences in the magnitude of the polarization between.
cases B and C could be due to the larger single scattering
backscattering in case C. (Compare figures 2.36 and 2.40
for the polarization and figures 2.35 and 2.41 for the inte-
grated intensities.) The large polarization of case C at
small phase angles has an important affect on the direction
of the polarization across the disk, as we will see very
shortly.

The variation of the T polarization with ®, has been
calculated for this case as well; we display it without com-
ment in. figure 2.42.

Figures 2.43-to‘2.51 show the appearance of the degree
of polarization across the disk of Venus at 1 micron wave-
length for our model: Figures 2.52 and 2.53 compare these
calculations with Coffeens observations at two phase angles.
The scale 1s the same for all phase angles. Note that here,
since the single scattering polarization is-always negative,
we may read "tangential' for "radial" when comparing this
case to cases A and B.

It will be noticed immediately that- for the total in-
tensity tangential polarization is practically absent for
¥ > 6°. ¥ = 0° was not calculated, but we would expect it
"to be tangential there from symmetry alone.  Comparing this
case with case A for Rayleigh scattering, the absence of tan-

gentlal polarization is: striking. From the previous discus-
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sion we would attribute this to large single scattering in-
tensity at large phase angles.

The tangential polarization, although overwhelmed by
the single scattering polarization, 1is present in the M pol-
arization at both large and small phase angles. In fact the
total behavior of the M polarization is very similar to what
we observed for Rayleigh scattering. The large M polariza-
tions near the poles will be observed to be tangent to the
disk at all points.

The absence of tangential or radial polarization over
a large range of phase angles including the region near zero
phase is quite an important result. It is most probably true
of all atmospheric models containing particles whose average
radii is larger than the wavelength, although we have not
made enough computations to be positive. Rayleigh scatter-
ing and scattering from large particles can thus be distin-
guished at a glance by the direction of polarization at small
non-zero phase angles. We believe that the general character-
istic of large transparent particles of enhanced polarization
in the region of enhanced backscattering intensity quickly
destroys the radial polarizatlion as the phase angle increase

from zero.¥*¥ More computations will be needed to determine

¥The polarization and intensity peak characteristic of the
primary rainbow for o>>1 is only marginally present in the phase
functilon for Venus at 1 micron. The position of the rainbow
moves towards smaller phase angles as U decreases (and as the in-
dex of refraction increases). For n=1.45 the primary rainbow
should appear at 38°, but the polarization peak here appears at
10° and the intensity peak at 19°,.
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how well this effect alone can give information on the part-
icie,size and index of refraction. The importance of the.
intensity peak on the polarization direction must also be de-

termined for a complete. understanding.:

b. Comparison with Observations

The model that we, have been discussing is. significant
because it is able to. match the disk integrated polarization
of Venus at 1 micron as.well as at other wavelengths. As we
shall see now, the model also is consistent with polarizations
measured at selected points on the disk, lending further
weight to Hansen's (1971) conclusions. (Hansen has proposed
that the clouds of Venus are composed of particles with
n=1.45¢0.02 and a = 1u).

Unfortunately the polarization calculations we have
performed can be related direcfly to observations only in
the limiting case of measurements made with a resolution
element far smaller than the size of the disk. The actual
resolution element used by Coffeen and Gehrels (1969) did
not satisfy this condition. Thus to compare these observa-
tions with our calculations an integration over a small por-
tion of the disk, allowing for seeing effects, would have to
be performed. This was.not done and consequently in compar-
ing aur results with observations the following must be kept

in mind: Near the, terminator and limb, and especially at
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their intersection, the pole, the polarization increases
more rapidly than elsewhere, while the intensity decreases.
Thus any integration that does not fairly weight these areas
will tend to overestimate the polarization. Our crude 1inte-
gration made use of only data similar to the data in the fig-
ures and overestimates the polarization where noted above.

Figures 2.52 and 2.53 compare the observations and cal-
culations. The circles show the area of the measuring aper-
ature, not allowing for seeing effects, which are consider-
able when observing Venus. The upper and lower numbers give
the observations and computations repectively. The lines
drawn through the data circles indicate the observed direc-
tion of the electric vector maximum. In the intermediate
limb regions between the pole and equator Coffeen observed
that the direction of polarization is more nearly parallel
to the limb, being deviated in that direction by an average
of 5°. Our calculations show a deviation of 4°. The plane
of polarization is rather well fitted elsewhere on the dilsk
as well. A good agreement is also found for the magnitude
of the polarizatlion except near the limb and especilally pole
as discussed previously.

The comparison, within the computational limitatilons
we have mentioned, and the observational variability discus-
sed 1n the next section, supports the following statement:

the detailed structure of the planetary scattering may be
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satisfled as well by Hansen's atmospheric model. This is
encouraging for it means that 1f we believe Hansen's model,
we may begin to model the regional departures from the aver-
age. Thus-cloud top altitudes, variabilities in the index

of refraction, particle size distribution and particle shape
could be mapped though the effects may be difficult to separ-
ate in practice. '

The preceding discussion does not confirm Hansen's mod-
el, though it does argue in its favor. We belleve that Han-
sen's model stands strongly by itself, if we apply the test
of Occums Razor, for 1t 1s the simplist explanation to fit
all the data. A two layer model should be investigated, how-
ever, for it 1is not clear that a two layer model with differ-
ent indexes of refraction or particle size distributions can
not do the job as well. A two layer model should be investi-
gated for an index of refraction of 1.45 .is difficult to ex-

plain while 1.33 + 1.50 is not.
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Figure 2.43 Case C. Forward scattering phase function which matches disk
integrated phase variation of Venus at one micron. ¢ = 6°. Upper (a) = T;
lower (b) = M. T polarization is mostly negative, M polarization is
tangential negative. Scale is the same for all phase angles and is equal
to the scale for Rayleigh scattering with ¢ = 30°. |
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5% 1204

Insert

Flgure 2.44 Case C. y = 11°, where phase function has a polarization peak of
-54%. M polarization unchanged from y = 6°, except near the center where it

is larger and more negatively directed, similar to the behavior of the
Rayleigh phase function._
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Figure 2.45 Case C. y = 30°, near minimum of absolute value of T polarization.
The T polarization is largely negatively directed at this and other phase anglés
shown. Contrast this with the radial directivity of Rayleigh scattering at

similar large and small phase angles.
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Figure 2.46 Case C. y = 60°. Data is available for comparison here.
See figure 2.52.
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Figure 2.47 Case C. ¢ = 77°. Data is available for comparison here.

See figure 2.53.
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90°
120°

Figure 2.48. Case C. vy

Fiugre 2.49. Case C. w
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— 20%

e ——— | 20%

Figure 2.50 Case C. ¢ = 144°,

Figure 2.51 Case C. ¢ = 160°. Tangential negative not yet apparent at this
the largest phase angle computed. M polarization does show some tendency

in this direction.
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Figure 2.52

T

. Observed
F' 2. . 3
e ; . Direction of
f DllrecII;?r:i Q observed
of calculate el
polorizution] b polarization
Calculated
'w=77°

Figure 2.52 and 2.53 Coffeen's observations of Venus polarization at 0.9G u
and calculations compared. bata taken north and south have both been given.
Circles indicate approximate size of physical diaphragms used in the observ-
ations. Calculations at limb, terminator and especlally at poles overestimate

polarization due to integration scheme used.



V  LOCALIZED POLARIMETRIC OBSERVATIONS OF JUPITER AND VENUS -

DISCUSSION

Much of the discussion in section IV, while gleaned
from three very specific examples, may in.fact be guite gen-
eral in its application. For now we have a better a priori
sense of what to expect from the distribution of polarization
across a planet and we may compare the discussion of gection
IV with the observations. We will see many of the calcula-
tlons have observational counterparts. We also will make
some tentative suggestions about the scattering behavior of
the particles polarizing the light of Jupiter and Venus.

The suggestions are tentative because it must be. realized
that no model calculations have been performed.

Polarization observatilons over the disk have. been. few
and separated.by decades in time. Lyot (1929) did the first
principal work in the field, performing extensive visual
light observations of Venus, Jupiter, Saturn as well as of
Mercury, the Moon and Mars using a Savart polariscope. Years.
later Dollfus (1955) did a thorough study of these planets
at a variety of wavelengths wilth a Lyot polarimeter. A hist-
ory of-the work in the. intervening years. may be found in.Dol-
1fus's (1955) thesis. His work included observations of
disk integrated and regional polarizations as well as their.

secular variations over time with an accuracy of *.1%. In
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more recent years localized polarization studies of Venus

have been published by Dollfus (1966) and Coffeen and Gehrels
(1969); Jupiter was studies by Gehrels, Herman and Owen (1969)
and Hall and Riley (1968) who also make observations of Sat-

urn as well (Hall and Riley, 1969),
1. Jupilter

Many of the observations show effects we have seen in
our calculations. All of the studies of Jupiter and Saturn
have revealed a radial polarization pattern in the ultravio-
let especially near the edges of the disk. Our Rayleigh
scattering calculations show this behavior. The polariza-
tion at the poles 1is always observed to be greater than at
the limbs. While our calculations show this, the effect is
only noticeable for phase angles 3 12° for the Rayleigh at-
mosphere. On Jupiter this effect is more probably due to a
difference in cloud top altitudes from equator to pole such
that a much greater molecular atmosphere overlies the clouds
at the poles (Gehrels et al., 1969). The polarization in-
creases from the center of the disk to the limbs as in our
calculations. There is a N-S versus E-W asymmetry however
such that the polarization is greater in the N-S direction
even at small phase angles (Gehrels, 1969).

The central regions of Juplters disk exhibit a less

radial pattern which is much more chaotic than our calcu-
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lations (Hall and Riley; 1968,1969) and may be useful in
modeling lateral inhomogenities in the distribution of cloud
particles or of cloud top altitudes. The position of the
electric vector maximum changes from positive to negative

in the central regions as the anelength increases from ul-
traviolet to infrared (Gehrels et al., 1969; Dollfus, 1955).
If we take cases A and B to represent ultraviolet and infra-
red respectively then this phenomena is present in our cal-
culations; compare figure 2.6a for Rayleigh scattering and
figure 2.25a for case B. In the,infrafed-the negatlive polar-
ization inereases from the center outwards as the phase angle
increases (Dollfus, 1955). Compare figures 2.2&& and 2.25a
for case B where this phenomena appears. These figures show
that while the center of the disk has a negative polarization
the edges display a radial positive direction. The observa-
tions, on the other hand, while showing a radial polarization
near the poles, show a tangential negative polarization at
the West (and presumably East) limbs in the infrared (Gehrels
et al., 1969). Since Rayleigh scattering is more important.
at the North and South poles than at the limbs, perhaps a
more meaningful example of the phase variation of the central
regions which reproduces the phenomena at the West 1limb

would be figures 2.43 and 2.44. (The negative tangential nat-
ure would be more apparent at smaller phase angles,‘but the

diagrams of the M light show what the behavior would be like.)
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A uniform homogeneous single layer model cannot ex-
plain the disk polarization of Jupiter. In visilble light
the optical depth of the molecular scattering layer is about
0.5 above latitude 45° while it is about 0.05 at smaller lat-
itudes and along the equator (Gehrels et al., 1969). An
optilcal depth of 0.05 1is insufficlent to blanket the effects
of the cloud polarization and we find that along the equator
the polarization in the infrared behaves in a characterist-
ically negative manner. In the ultraviolet, on the other
hand, the equatorial polarization behaves in a characterist-
ically pesitive manner. The optical depth in the ultravio-
let of the equatorilial Rayleigh atmosphere above the clouds
would be 0.3 according to the usual A_u law. This depth of
Rayleigh scatterers may be sufficient to account for the
positive polarization. Two layer model calculations may
be required to confirm this, however. With the removal
of the effect of the Rayleigh atmosphere there may be enough
data as a function of position on the equator, phase angle
and wavelength to be able to meaningfully model the cloud

composition.
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2. Venus

Turning now to Venus, there are many more observations
available than for Jupiter, including variable features over
many years and secular daily changes as well. We shall dis-
cuss only a fraction of the observations.

In our calculations we have seen the polarization in-
crease towards the. poles, as 1s observed. All the observa-
tions of Coffeen and Gehrels (1969) show polarizations most-
ly perpendicular or parallel to the plane. of scattering over.
the disk in agreement with all three of our cases at the an-
gles observed. Deviations from these directions, however,
is not always in the sense predicted from the nature of the
integrated phase function even allowing for the scatter in
the observed directions. Thus at 3400A, where the integra-
ted polarization is always positive, Coffeens observations
show a turn towards the negative tangential near the limb.
This is not understandable within the plane parallel uni-
form models we have derived. In addition to these.unpre-
dicted:.deviations, there are secular changes in the Stokes
intensity from day. to day that require the formulation of.
more complex models. At 60° phase angle Dollfus (1955)
observed polarized spots changing from day to day as well
as a changingdistribution of-negative and positive regions.

We would not expect to see both negative and positive re-
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gions on the same disk for one uniform layer except near a
null.

Near ¥ = 60° Dollfus, as Lyot before him, observed
the polarization of the poles to change, the position of
the maximum shifting off the poles and suffering deviations
in direction of up to 18°. Dollfus interprets this as being
due to cloud structure: bands, striations and coils. We
remark that while this 1is certainly possible similar effects
can result from a changing index of refraction (as in a two
layer model) or particle size distribution.

Near ¥ = 10° the polarization was observed by Dollfus
to pass through a null in the disk integrated light. This
may be compared to figures 2.26,2.27 and 2.28 for case. B.
The polarization observed is non-uniform, being positive in
some regilons and negative in others as well as displaying
considerable variability. Near the terminator the direction
is more tangential negative than at ¥ = 60°. The more tan-
gential behavior of higher order scattered light probably
dominates in this region. The observations (Dollfus,1955)
as well as the calculations here (figures 2.27 and 2.28)
show that small changes in the phase angle can cause large
changes in the direction of polarization. The observed
polarization across the planet near the null is not as un-
iform as in the calculations nor is it symmetrical north

and south. If we assume the localized polarimetric obser-
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vations can be matched in detail by Hansen's (1971) model

of the cloud particles--as we have shown probable in case
C--then behavior at null points becomés an important tool

to probe for more refined structure. The particles size
distribution, index of refraction, cloud structure and the
effect of variable cloud altitudes all affect the direction
of polarization.and the position of the null point. The
variability of these conditions might be lnvestigated at the
null points:

Dollfus (1966) has also observed the polarization ac-
ross Venus when it appears as a thin crescent at large phase
angles. He observed that the electric vector maximum 1is
oriented parallel to the 1limb, i.e. tangential negative, in,
both green and red light. The polarization was not maximum
as the poles, but elsewhere along the crescent. Dollfus
does,. not believe this tangential orientation can be explailned
by multiple scattering in the atmosphere. The integrated
polarization is positive at these phase angles, thus seeming
to imply radial, not tangential, polarization. He concludes
that this tangentialism and similar tangential tendencies.
observed near the limb at other phase éngles can be explain-
ed only by banded or striated cloud. structures.

We disagree. The positive polarization at large phase

angles is met probably due to the process which causes neg-
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ative polarization for ¥ > 164° for Rayleigh scattering as
calculated by Kattawar and Adams (1971). This was explained
in section IV A. As the planetary phase increases we have
seen (figures 2.11, 2.12, 2.13, 2.20, 2.33, 2.34, 2.51) the
polarization across the disk goes from negative(or positive)
to tangentlal negative (or radial positive). The integrated
polarization, however, where we now rely on Kattawar's cal-
culations, would go from negative (or positive) to positive
(or negative), due to the larger weight given the illuminated
crescent in the equatorial regions. This appears to be the
explanation of what Dollfus has observed.

The smaller polarization at the poles, in contrast to
the kehavior at other phase angles, may be due simply to the
larger polarization of the multiply scattered light. which is

more visible towards the equator.

Polarization studies are a potentially powerful source
of information on particle composition, size and distribution
in the atmospheres.as well as on the surfaces of the planets.
The interpretation of these data is still in its infancy.

The potential for successful interpretation is high because
multiple scattering does not wash out polarization features
as it does intensity features. The future will bring faster
electronic computers, and faster computation schemes as well

so that many model calculations may be easily performed. The
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next few years can be expected to bring an order of magni-
tude increase 1n polarization observations of a type not
possible a few years ago. The polarization experiments
aboard the Mariner 9 mission to Mars, the Mariner 10 swing-
by. mission to Venus and Mercury, the Pioneer F and G missions
to Jupiter and the Grand Tour missions to Jupiter and the
rest of the solar system with provide accurate (*.a few %)
regional and disk integrated observations of the planets

at ‘a wide range of phase angles. The missions to the outer
planets will permit- viewing at phase angles not accessible
from the earth. Meaningful disk integrated-and regional

model calculations will then be possible.



APPENDIX

The investigation of cases A, B, and C in the main
text involved, in part, a parameterization in W,. The ef-
fects of varying @, was not fully investigated above, nor do
we do a complete study here. It was felt, however, that
some of the information we obtained in varying ®,, while
not useful to our argument, would be worthwhile summarizing
here.

Below in Table A.l1 we give the geometric albedo, p,
the phase integral, g, the Bond albedo, AB, and the quantity
q/p(b0°), supposed to be a constant from Russell's (1916)
law. The quantities were defined in the test. The results
were calculated by scalar intensity methods (designated INT)
and by matrix methods for the Stokes intensity (designated
POL). Both sets of results are shown. in-the table.

The geometric albedo decreases as we would expect as
W, decreases for all three cases. There is a difference
between the values of p calculated by scalar and matrix
methods, the difference being greatest for Rayleigh scat-
tering and small or non-existent for the other two cases.
The quantities q and q/p(50°) show the same behavior in the
comparison of scalar and matrix derived quantities. The
magnitude of the differences correlate with the degree of

forward scattering given by <cos 6>. Experience with var-
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TABLE A.1
B p Ay |a/p(50°)
por, | InT |poL |INT | EOF |pon |INT
| , NT | 1y
CASE A: n1 {0.790]0.744[1.25{1.33]0.990({2.09{2.22
Rayleign, |0-99990.778/0.733|1.25/1.33/0.975|2.09|2.23|
oot 0.0 |0-999 [0.743/0.69711.25(1.330.929({2.10{2.24
0.995 |0.682]0.637]1.25|1.33]/0.850]2.11]2.26
0.990 |0.640{0.596{1.24]1.33/0.794{2.12{2.27]
0.975 |0.565|0.522]1.23]1.33]/0.695|2.13]2.30]
0.950 |0.491{0.451{1.22{1.32]0.597{2.14{2.33]
0.900 |0.400|0.366]1.20]1.31]0.479]2.15]2.35
0.800 |0.293(0.268{1.17{1.28{0.343]2.16{2.36]
0.600 |0.172]0.160|1.15|1.23]0.196]2.18]2.38
CASE B: [0.9995[0.558/0.558(1.57|1.57|0.878]|2.32]2.32
T = 5.0 0.997 |0.446]0.4461.64)1.6410.730(2.39{2.39
0.993 |0.365]0.365]1.70]1.70]|0.621]2.47]2.47]
<cos8>=0.8421, o0 10.326(0.326(1.74{1.74]0.567|2.51|2.51
0.950 |0.142]0.142]2.07]2.07]|0.294]2.95]2.95
casg c. |0.9995]0.675/0.674]1.35]1.35/0.911]2.28|2.28
—  10.999 {0.649]0.647{1.35{1.35/0.877{2.29(2.30
T =6.6 15 995 |0.550/0.548|1.36]1.36|0.747|2.35]2.36
<cos8>=0.694]0.985 {0.445{0.443{1.36{1.37[0.605]2.43]2.4
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lous phase functions has shown that only in the case of very
Rayleigh-like phase functions does a substantial difference
exist, both in these quantities and in the intensities them-
selves. Curiously, the Bond albedo is not.affected by the
method of computation, at least to the accuracy of the tab-
ulated values.

The quantity q/p(50°) has been found to be approximately
constant for many astronomical bodies, and a values of 2.2
is usually taken as its value. Veverka (1971) has shown this
to be a consequence of the rapid decrease of a planets bright-
ness as the phase angle increases. The variation with &, in
the table indicates that for non-Rayleigh planetary atmo-
spheres at least the result also depends on the fact that the

albedo i1s high.
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Part III

RADAR OBSERVATIONS OF .THE MOON AND THEIR INTERPRETATION:

A MULTIPLE SCATTERING APPROACH:

Abstract

It 1s proposed that the average diffuse component of lunar
radar echoes results from the effect of multiple scattering
by rocks buried beneath the surface of the interior and
exterior ejecta blanket of fresh young craters. The multiple
scattering volarization computer program that was developed
in Part I is used to calculate the scattering matrix of a
plane parallel layer of buried rocks. The scattering matrix.
1s then integrated over the surface of a crater and the re-
sults of crater and ejecta blanket combined. A single choice
of parameters produces a model which shows good agreement
with observations. Inferred mean indices of refraction of
1.3 and 1.6 for the ejecta blanket at wavelengths of 3.8 cm.
and 23 cm., respectively, are consistent with measurements

on an Apollo 11 fine sample and indicate an increasing den-
sity with depth beneath the surface. Testé_are proposed to
settle the question of multiple vs. single scattering. If
the model 1s correct then the difference in diffuse reflect-
ivity between maria and highland 1s due chiefly to a differ-
ence in the single scattering albedo of buried rocks. Then
properly prepared radar maps could serve as geological maps
of that mineral or minerals, perhaps 1lmenlite, which dominaté

microwave absorptlon processes.
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I INTRODUCTION

The typical lunar radar experiment consists of
illuminating the moon or a portion of it with a cir-
cularly or linearly polarized beam and receiving the
power in the sense expected from a perfectly smooth
dielectric sphere. In the case of circular illumin-
ation the expected sense is opposite to that trans-
mitted, while for linear it is the same sense. More
sophisticated experiments have also measured the power
returned in the unexpected sense. This is usually
referred to as the depolarized component, and is the
least well explained and, at the same time, potentially
the most informative datum on the nature of the lunar
surface.

The returned power may be analyzed according to its
time delay relative'to the first return from the subradar
point and to its frequency spread relative to the fre-
guency of transmissioﬁ. Power with a given delay is
returned from a circular annulus centered on the subradar
point. (Strictly speaking, the annulus is only an approxi-
mation since features such as mountains which are large
when meaéured in fractions of a resolution element, can

contribute even though slightly outside the annulus.)
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This provides a one-to-one mapping of delay space onto 8
space, where 6 is the angle between the line of sight
and the local surface normal. The doppler spread of the
frequency provides the second coordinate needed to localize
the returned power.

The moon appears to rotate or librate during an
observation due to the combined motion of the observer
on the earth due to the earth's rotation, the-non-circu-
larity of the moons orbit, and the inclination of the
moon's orbital plane and the earth's equator. Thus at
any given time a unique axis of libration is defined.
The locus of constant doppler shift is a -series of lines
parallel to this axis. The intersection of strips of
constant doppler shift with annull of constant delay
provides locallzation of features with a twa—fold de-
generacy. The degeneracy may be-removed - -by pointing an
antenna whose beam width 1s small compared to the angular
-size of the moon -to 1lluminate only one area-at a time,
In this way maps have been prepared for most of the side
of the moon visible to the earth.

The results from the resolution in delay are quite
-interesting. - The polarized component shows a pronounced
peak  in intensity for small delays, followed by a much

slower - -decline at larger delays, the dependence on 6 being



170

approximately cos!*S5 g until near the limb, when a cos 6!°°
dependence 1is approached. The depolarized component has
no such central peak and follows a cos 6 law for most of
the range of 6. This slowly varying component of the
polarized and depolarized data 1s called the diffuse
component. It is this component which we hope to explain.
The peaked return is similar to that expected from a
polished specularly reflecting sphere and is called the
quasi-specular component due to its similarity to the
results expected from a-smeoth sphere.

We hope to show that the diffuse component of the
polarized and depolarized power is due to multiple
scattering from wavelength sized rocks lying above and
beneath the surface of areas inside and in the ejecta
blanket of fresh young craters. To do this we apply the
multiple scattering program developed in Part I of this
thesis to spherical rocks buried beneath the surface of
an absorbing layer of dust having an index of refraction
ng- The scattering law that results is integrated over
the assumed parabolic surface of a fresh rocky crater
and combined with the scattering from the ejecta blanket
itself, appropriate weights being given to each scattering
source. Using data-+on the nature of fresh craters, their
size distribution and the distribution of boulders in

their vicinity we are able to match to a plausible degree
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not only the angular data.provided.by delay-doppler
techniques, but also wavelength dependence of the cross
sections, maria-highland differences, and the absolute
value of the cross sections. Our main emphasis will be

on the average properties of the lunar surface integrated

‘over- large-areas -- either annulil of constant delay or

Maria-highland properties. . The model, however, natdrally
explains the data for large (A 10 km) fresh young craters
seen-as enhanced areas on radar maps.

The work - here -differs-in three. significant resbects
from-all previous work although some authors-do discuss
some of the points we raise. The first and most important
departure is the invocation of multiple instead of single
scattering, though this has been discussed briefly by
Thompson et al. (1970). This is also the first detailed
multiple scattering attempt to-ekplainvthe:polarized—

depolarized data. First order theories using a dipole

single scattering mechanism have been put- forth pre-

viously by Hagfors (1967a) and Burns (1969). Lastly we
differ in our description of the actual physical place-
ment of the scattering elements. We assume that the sources

are -discretely rather than uniformly located across the

- lunar surface-and that- the locations coincide for the

most part with the. areas near fresh young craters,
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In the following section we will present a summary
of observations and previous theoretical work and discuss
more fully our departures from previous work. Sectlons
III and IV derive and discuss the single scattering
behavior of the scattering model. Sections V and VI
derive the scattering matrix for subsurface multiple
scattering in a crater and its ejecta blanket. Much of
-the work in the last three sections we have mentioned
is not necessary for a complete understanding of the
argument and may be skipped over in a cursory reading.
The comparison of the observations -with our computations
for data taken as a function of position on the disk is
presented in sections VII and VIII. Sectilon IX is
devoted to a discussion of-the high single scattering
albedo required by the results in section VIII. Obser-
vational tests of the model are proposed. Section X deals
with the absolute diffuse cross section, its wavelength
dependence and variation from highland to maria. The
discussion in IX and X implys that maps of the polarized/
depolarized power ratio may serve as mineralogical maps

of the lunar surface.



IT THE OBSERVATIONS AND PREVIOUS INTERPRETATIONS

In this section we will preserit a survey of the
relevant radar data. The work of other investigators
wlll be examined and.the differences between previous
theories and. our present hypothesis.will be pointed out.
Basically the differences are-single scattering vs.
multiple. scattering and homogeneous sources vs. discrete
sources. At the end of the section we present some non-
radar data which suggests the.hypothesis:of multiple
scattering from boulders beneath the surface near fresh
craters.,

There are three-basic types.of:.observations with
one radar unit as.transmitter and reeceiver (the monostatic
case): absolute ecross section measurements, measurements
as a function of delay averaged.over a range ring, and
measurements as- a function of pesition. on the disk
averaged over- a‘ range-deppler.cell. -We. diseuss each type
below. in a separate subsection. A.feurth type of obser-
vation making use of delay,.doppler shift and phase to
give height-differences:will net-be:considered. The
transmitter can»be-set.upztouillumihate”the'moon with.
either circularly or linearly:polarized: radiation and the

‘radar return can be:analyged,.independent of the polari-
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zation mode transmitted, into two linear components or

two circular components. Unfortunately most experimenters
have only measured that sense of polarization that would
be expected from a smooth sphere, the polarized component.
The polarized component has been observed over a wide
range of radar wavelengths, from 8.6mm to 12m. A

smaller subset of these contain data on the unexpected

or depolarized component as well.

1. Cross Section

Cross section measurements provide information on
The dielectric constant of the surface layers. The
dielectric constant follows from the cross section
derived using Fresnel's laws of reflection once proper
account is taken of undulations of the surface and the
amount of energy returned in the -non-specular or diffuse
component. Hagfors (1967a) obtained a value of €, = 2.64
(nS = 1.62) for his work at 23cm wavelength. (We shall
use the dielectric constant, €, and the index of refrac-
tion, n = 81/2, interchangably from now on so quantities
willl sometimes be expressed in terms of both. Strictly
speaking this 1is only true of minerals with a small

amount of ionic polarizability.) The dielectric constants

obtained in this way at 3.8cm and 70cm are similar.
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- Hagfors has. also developed a more realistic depth
dependant model for the dielectric constant, thus
providing for power returned from some distance into the
surface as well. We-shall neglect this refinement in

our calculations. and derive only equivalent uniform layer
results.

The total cross section of the moon as measured by
Evans and Hagfors (1966) at 23cm in the polarized com-
ponent: for circular transmitted and received radiation
is oi= (0.065 iO.OO8)'7rR""where R is the radius of the
moon.--. This is the most accurate measurement to date
because -the LCS, the Lincoln Calibration Sphere, a
polished metal sphere in earth orbit for absolute cali-
bration of the antenna, was employed. 1In this way they
were-able to keep their errors to‘within-i 1 db. Cross
-sections obtained at other wavelengths ineclude two-way
calibration-difficulties bringing the error-to at least
I3 av.

The data show very little if any change in the
total cross sectlon in over 3 decades in wavelength, from
8.6mm to 12m.  See figure 3.1. At the larger wavelengths
the cross section appears to increase-along with the
error bars, radar-systems being intrinsically less sensi-
-tive at longer wavelengths. Some of the-uncertainty

here- 1s -due to the exact placement of the- subradar point
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(Burns, 1970), the cross section being higher at 12m in
maria regions.than. in highland regions. - Nete that this
refers essentially to the quasi-specular component and
says nothing about the diffuse component.
The diffuse' component:of the:.radar cross section

~is-of more interest to. the present work, since 1t is
the diffuse component of the radar return we are
attempting-to explain;v Thediffuse-cross-section is
obtained by extrapolating the diffuse component back-
wards to zero delay and subtracting out the quasi-
specular peak. The method of extrapolation is not
unambiguous, however, since it depends on the model of
the quasi—specularﬂcomponent° The diffuse cross
section has a significant wavelength dependence. The

‘data are given in Table 3.1 below taken from Hagfors (1967a).

TABLE 3.1

Diffuse Cross Section in Polarized Component

r(em) % of power in diffuse diffuse cfoss section
polarized return assuming total cross
section = 0.0657R?

0.86 85 0.055
3.6 35 . 0.023
23. 25 0.016

68. 20 0.013
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Using other assumptions as to the character of the diffuse
component, Pettengill and Thompson (1968) have obtained
12% for their 70 cm results. Hagfors gives the wavelength

dependence - of the diffuse component as:

g o« pA—0r32 3.8em < A < 23cm

« A70%28 23 cem< ) < 68cm

The wavelength dependence of the diffuse cross section
can be derived quite easily if the diffuse component is
attributed to single scattering from wavelength sized rocks
lying on (and in) the lunar surface. This calculation has
been done with varying degrees of success by Hagfors (1967a),
Burns (1969), Thompson et al. (1970), and Zisk (1970). We
shall follow the development by Thompson et al. because
thelr work is more general and to some degree encompasses
the work of others.

We will find that if only single scattering is con-
sidered then the diffuse cross section varies as A°~° where
s 1s the exponent of the power law distribution function
of rock sizes. Specifically, if n,(a) = n,a~%, then
nA(a)da 18 the number of rocks per unit area between a and
a + da, where a is the radius of the rock. The cross

section per unit area due to these rocks

3.1 o) = fny(a) 022 raraa
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Q 1s the backscattering efficiency, and can be- approximated
via Mie theory for scattering from spherical objects in

free space. It-is a function of « =-§%§, the size parameter.
With the substitution of "a" for "a" the«integral becomes

wavelength independent and we get
3.2 o(A) = A37°

Hagfors (1967a), Zisk (1970) and Burns (1969) have used a
cruder approximation for Q, though this is easily seen to
have no effect on the anelenéth dependence-for the very
special case of the power law distribution: that is usually
used. Their different assumptions do however have a large
effect on the absolute value of the cross section. This
will be discussed shortly.

The value of s derived from the wavelength dependence
matches. quite nicely the value of s-observed in Surveyor
studies of rocks lying near the spacecraft_(Surveyor
Project Final Report, 1968). This. has been-used (Thompson
et-al., 1970) to argue in favor of single scattering from
rocks as the source of the diffuse component. Unfortunately
multiple scattering requires modification of this simple
approach. The wavelength dependence will be' seen to be a

related to the simple scattering albedo of - the rocks as
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well as wavelength changes.in the index. of refraction and
wavelength dependent crater parameters. The need for a
multiple scattering model will be discussed later.

The absolute value.of. the diffuse cross-section per
unit area is a source of serious concern for the multiple
scattering approach we shall take. It is not at all clear
that the entire diffuse cross section cannot be explained
by single scattering from surface rocks seen in Surveyor
photographs. There is however good evidence to belileve
that the success of this calculation is fortuitous. Later,
after presenting some pertinent observations, we shall
discuss why it should not work.

Hagfors (1967a), using the cross section of the moon
as a whole to estimate rock cross sections, concluded that
the Surveyor rock counts were more than sufficient to
explain the observed cross section. His treatment has
been criticized by Thompson et al. (1970), who found
numerical errors in the derivation of the rock density
function and conceptual errors in the approximation of
boulder cross sections. Burns (1969), using the approxi-
mation that the reflectivity was independent of size,
derives a cross section insufficient to match observations.
This assumption is in serious discord with Mie theory

results which show a rapid rise to.5 or 10 times the
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geometric cross section. as .the size: parameter, a = s

278,
A
becomes- greater than 1. This: is followed by a first rapid,
then slow decline to the cross section of a large dielectric
sphere given by Fresnel's laws.. Zisk (1970) uses a more
realistic-approximation-for the variation of cross section

with o, but his results seriously. overshoot the observed

values. - A-cloeser-approximation to-the' Mie theory would

- lower -his results. -Thompson. et- al.. (1970),.however, have

used the Mie theory in conjunction with Surveyor rock
counts, and they -derive a -smaller -eross section then
observed.

My_results-paralleling'the:calculations-disqussed above,
using the backscatter cross section from the Mie theory,
proves to be higher than observed values. The actual
backscatter cross sectioen of the rocks is not known for
the rocks are not spherical as we:have assumed. The
actual cross sections may be smaller-by~”@%~CGreenberg et
al., 1971) or more. The "average" of all these ealculations
appears-te show that Surveyor rock- counts alone are suf-
~ficient to explain the diffuse cross section. As we
discuss later, however, the.rocks counted by the Surveyor
spacecraft seriously underestimate-the.total number of
rocks lying on the lunar surface. Thus:none-of the rabove

calculations could be valid, and -their:-sueccess- is :gccidental.
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Cross section calculations by Thompson et al. (1970)
and Zisk (1970) using the different rock size distributions
at the Surveyor sites have shown that the -sense of the
observed radar enhancements in-these regions is obeyed.

We note, however, that from 6ur point of view, enhanced
regions would contain more fresh-craters which would
increase the amount of general debris in the- area. Thus
both our hypothesis and earlier hypotheses are able to
explain this observation.

Thompson et al. discuss a multiple scattering model
for the diffuse cross section. However they assume a
homogeneous model, whereas ours is inhomogeneous, allowing
for discrete scattering centers. The present calculations
will show that single scattering albedos small enough to
produce the observed cross section are far too small to
produce the observed depolarization. It was in fact this
calculation that led to the present inhomogeneous model.

Any model for the diffuse component of the radar
refturn must be consistent with the observed cross section
and the observed wavelength dependence., In-addition it
should be able to explain Thompson's (1968) estimate that
the highlands are twice as bright as the maria in the

diffuse component.
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‘2. Delay Measurements

The radar return as a functien of delay provides
information on the average -lunar scattering law since
~the results average over a range ring. The angular
dependence of -the polarized and-depolarized cross
section per unit surface area in rings- of:constant delay
is presented in figures-3.2 and 3.3 for 23cm, for circular
and linear polarization transmitted and received (Hagfors,
1967a). For the polarized data, the diffuse return

/29 fop angles 6 between 25° and about 80°,

varies as cos
where a transition to a cos 6 law takes place. The
depolarized data may be approximated.by cos 9 over a
wider range of angles. The above.statements:apply as well
to the 68cm data, although the 3.8cm data indicates a
greater tendency towards a cos 6 dependence-(Zisk, 1970).
The ratio of polarized to depelarized power in the
diffuse tail equals about. 3db.for cireular and 7db for
linear polarization. It is important to note that for
circular polarization at least (Where»the~data is avail-

able) the ratio of polarized to depolarized power is

almost constant for 68cm, 23cm and 3.8cm; the difference
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between 3.8cm and 68cm is only 0.75db.

A theory that attempts to explain the: diffuse return
must cope-wlth these results. . In order to produce this
much depolarization Hagfors suggests,. as-a first approxi-
mation, that the scattering behavior is due~to randomly
oriented linear dipoles. By dividing the power between
dipole scatterers and scatterers that do.not depolarize
at all he finds that both the linear and circular depolari-
zation data lead to the conclusion.that the linear dipoles
contribute about 70 percent of the observed diffuseipower.
This consistancy check, while certainly a happy one; does
nothing to validate the model, since as Hagfors admits, the
model is somewhat naive.:  Burns (1969) doesla»similar more
extended treatment of the same model, adding to it the
hypothesis, which we use as well, that the scatterers are
buried. This model too is ad hoc, for Burns fails to
deal with the question of what causes- the-dipole-like
behavior'of the scatterers. Burying the.rocks, however,
allows him to explain the angular behavior of the diffuse
component by Fresnel's laws. However Burns achieved a fit

3/ 2

to the cos ® law of the polarized component which con-

tains the effects of specular reflection, but did not fit
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the cos? g law of the depolarized component which is more
characteristic of the diffusely scattered radar return.
A similar treatment of the angular scattering -law has been

-achieved by.Zisk (1970).

‘3. Delay Doppler. Measurements

We come to a set of measurements which makes use of
the localization capabilities of:the range-doppler tech-
nigues. We gain the ability to define a local plane of
incidence and measure power polarized in and normal to this
plane. The data.will be interpreted to imply that the
scattering takes place beneath the surface.

In one experiment the moon was illuminated by a
circularly polarized beam and linear polarization was:
measured as a function of doppler position in the range
rings. The antenna was aligned so that one direction of
polarization coincided with the instantaneous position of
the libration axis, that is, parallel to the: local plane
of incidence. The incident circular beam may be considered
as two linear beams of equal intensity with a physical
-delay 1in space of a quarter wavelength. If the relative
phase of the scatfered wave is not. measured-the. incident

circular produces the same effects as an unpolarized beam.
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Figure 3.4 shows the results for four range rings. The
limbs are marked L and C marks the-points where the
curves for the two linears cross. Points C fall just at
these polnts on the disk -where both linears make an angle
of U45° with the local plane of‘incidence, This corresponds
to 0.707 times the maximum doppler shift at the limb. A
likely possibility, supported by other evidence we shall
present, is that this is due to the radar beam having
penetrated the top of the regolith, the difference in the
linear power being due to the effects of the Fresnel
transmission coefficients for the two orientations of the
electric field vectors (Hagfors, et al., 1965). The dif-
ference in the linear components is in the same sense as
predicted by Fresnel's laws. Note the anomalous peak in
the second graph near +4cps doppler frequency. This is
the crater Tycho, a large rayed crater and one of the
youngest large features on the moon.

The fact that the difference in the - -linears dis-
appears near Tycho seems to indicate that the scattering
is occurring at or near the surface in this region (Hagfors,
1965). Another possibility, however, is that the consid-
erable variability of the local plane of incidence in the

crater walls and chaotic crater floor averages over both
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linear components. We shall return to this point in
section VIITI.

To further illustrate that the diffuse scattering
occurs within the lunar regolith consider figures 3.5 for
23 and 3.8cm. The experimental setup is the same as for
the previous experiment but the data is presented as a
power ratio for the region along.the libration axis as a
function of cos 6. Thus one linear has its electric vector
always parallel to the local plane of incidence. Hagfors
assumed that the buried scatterers return power in the
same linear mode as was transmitted. He thus was able to
derive an index of refraction because the ratio of the
power returned to the two linear modes is then equal to
the square of the Fresnel transmission coefficients. His
result, assuming a constant index of refraction, is-

AY
n -—

s = 13 at 23 cm, which is lower than the value of n_ ¥ 1.6

derived from cross section data, although it fits rather
well with the value derived from radiometric observations
of the polarization of thermal emission from the lunar
surface (Hagfors, 1967a). A much smaller value of ng is
indicated for the 3.8cm data. Hagfors states that it is
possible to reconcile the two radar values of Ng by postu-

lating a two layer model. We will find instead that
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ng =-1.6-1s consistent with our ealculations since the
averaging of the local planes -of incidence -within fresh
craters and the depolarization within the surface requires
us to increase the index of refraction of the-dust to get
the same angular dependence.

Another significant but unexplained-observation is
shoWn in figure 3.6. The small square data points
represent the ratio of polarized to depolarized power. in
two linear modes from the libration axis for linear
polarization incident parallel to the libration axis and
in the local plane of incidence. The triangular points
are the experimental results for averaging- over all points
in a range ring at the same value of 6. That experiment
was described above. There appears to be a real increase
in the depolarization ratio, although the scatter in the
data points 1s greater., We shall find that this phenomena
is explained by Fresnel's laws when combined with the
multiple scattering reflection matrix, and gives further
evidence of the subsurface nature of the scattering

process.

The phenomena apparent in the delay doppler measure-
ments can have an alternate explanation. The same differ-
ences in the linear components could result from a

preferential orientation of the scattering centers such
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poiarization of illumination is averaged over all angles for the same data.
From Hagfors (1967a). '



194
that their long axes are vertical, as was. suggested by
Hagfors (1967a). We reject such a situation as being

inherently unstable.

4, Discrete Model vs. Homogeneous Model

Most previous discussions of the diffuse component
have shared the basic assumption that only single scattering
need be considered. The explanation given is that the
rocks are so widely scattered that absorption between
scattering events 1in the regolith reduces- the single
scattering albedo to-a point where multiple scattering can
be neglected. This argument, however, depends on the
tacit assumption that on the average each small area of
the moon contributes as much as any other. - This leads to
the slightly more explicit assumption that the rocks
counted in all the Surveyor missions are representative
of large -areas of the moon and, with a. eertain amount of
care, of the moon as a whole. Thus the Surveyor rocks,
or similarly distributed rocks beneath the surface, are
taken as the source of the diffuse component.

Pollack (personal communication) has shown: otherwise,
and we take his argument, given below,. as motivation for

the discrete source, multiple scattering approach. We
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use the data of Moore (1969), who made -boulder and crater
counts from lunar orbiter photographs.

Fresh craters are seen to possess large numbers of
rocks and boulders in their interiers énd for a distance
of 2 or 3 cerater radii outwards into the ejecta blanket.
Data is given for the fraction of the area covered by
boulders larger than a certain size in annulil one crater
radius wide out to 5 or 6 radii. Fresh craters occupy
‘about 1% of the lunar surface, so circles 10 crater radii
large centered on fresh .craters will approximately cover
the entire surface of the moon. ‘If we»extrapolate Moore's
data to 10 radili outwards we find a very interesting
result. We find that there is about 8 times as many
rocks from 0 to 3-radii as there are from 3~to 10 radii;
or, put another way, there are about 10 times as many
rocks in 10% of the lunar surface than in the-other 90%.
Thus the data from. all the Surveyors are basically useless
in determining absoiute«cross sections or deciding the
guestion of single scatterings vs. multiple-scattering,
though the exponent of the distribution functlons may be
significant. Using data from fresh craters we will find
that single scattering albedos greater than 80% are

plausible and thus that multiple scattering is important.
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We do the calculation of single scattering albedo in
Section IX, making use of the complex index of refraction
of lunar rocks and dust brought back by Apollos 11 and 12.
The skeptical reader is encouraged to skip ahead to Section
IX to allay any doubts that such high values are realistic.
The multiple scattering in the crater and ejecta
blanket would tend to enhance the. difference between the
cratef and the background even further. Depolarized
enhancements of more than a factor of 10 are common for
many- of the larger young craters.at:70 - em wavelength
(Thompson et al., 1970).. Zisk (1970),.working at 3.8 cm,
also finds significant enhancement around fresh craters
which he is able to resolve far better than other workers

at longer wavelengths. Some of his remarks follow:

"Most craters that are 'fresh' in geo-
logical appearance show a well-developed
halo (of ejecta?) in the depolarized

maps. In some cases,. the halo is strong
enough to obscure on the depolarized map
other features that are clear on the
polarized map. There also appear on the
depolarized map, and even more distinctly
on the ratio map, a number of bright
patches -- perhaps as many as 1000 on

the earthside hemisphere -- with diffuse
outlines but no obvious central crater.

In all these cases the Lunar Orbiter photo-
graphs show a bright, fresh crater or
clump of craters at the center of the
bright patch, although some of the craters
may be only a fraction of a percent of

the dilameter of the patch."



IIT THE DIFFERENCE: BETWEEN THE..SINGLE' SCATTERING MODEL
AND REALITY AND ITS INFLUENCE ON THE MULTIPLE
SCATTERING RESULTS

The multiple scattering results. we derive in later
sections are .predicated of course on how we choose to
describe the single scattering from a rock or group of
rocks. At opposite ends of the range.of models we can
either assume the scatterers are randomly oriented linear
dipoles or perfectly spherical dielectric spheres. Clearly,
neither model 1s the correct one and rocks having random
shapes fall somewhere in between.  Unfortunately,
scattering theory for randomly oriented,.-randomly shaped
particles 1s not developed at all.and we must make do
with the Mie theory, which has been fully developed only
for spheres and infinite cylinders...The-applicability of
Mie theory to the real situation is discussed below.

The approximation of lunar rocks by dielectric
spheres is at first sight a severe one,.though certainly
much less severe than the.approximation by.linear dipoles.
In evaluating the effect -of this approximation on our
final results two aspects:must be considered, intensity
and polarization.

No one non-spherical object-will. have the same

intensity phase function as any one“sphérewchosen to be

197



198

most equivalent, due to the detailed dependence of the
phase function on phase reinforcements and cancellations
inside, at the boundaries and outside the object. The
phase function of any particle which is wavelength-sized
or larger shows many ripples in the intensity as a
function of scattering angle, the number of ripples being
approximately equal to the value of the size parameter

o = 2%2’ where a 1s the particle-radius and X the .wave-
length. It 1s only by averaging over many different

sized particles that a smooth phase function -1s obtained.
For non-spherical particles we.also. expect a smooth phase
function, although the detailed- shape may.be different
from a set of spherical particles. of equivalent size
distribution. The ability of spherical particles to

mimic the phase function of non-spherical particles
depends on their departure from sphericity. Specially
filled angular particles are found to.do a reasonable Jjob
(Hodkinson, 1963), while fourlings (objects like the Jjacks
children pay with) of the same index of refraction, are
found to not work very well at all (Donn and Powell, 1963).
We may expect that convex objects work better than concave
objects. Lunar rocks are mostly convex, 80 we are helped

in this respect.
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-With respect to multiple scattering we are in a
much better position 1n.using. the- intensity phase
function of spheres. .It has been- shown (Van de Hulst
and Grossman, 1968) that through the use of similarity
relations, multiple._scattering. from. particles with
different sizes may be related by appropriate scaling of
the single scattering albedo,w,, and the:. value <cos 6>
of cos 0 averaged over the phase function.. Thus even
though the detailed form of the phase function is
different, the multiple scattering is similar for phase
functions with the same &, and <c03'e§. If we now make
the more reasonable assumption that g, and <cos 9> for
lunar rocks are similar to that derived. for spheres of
the same size, then we may expect-the multiple scattering
intensity results to be a-valid representation of the real
situation.

We are not so fortunate in.thewcase~of‘polarizatibn.
The scattering'matrix for spherical particles has only 6
non-zero elements, 4 of them independent: Lunar rocks will
be described by a matrix with 16 non-zero elements, all of
them independent. The additional elements result from
the tdtal lack of symmetry expected for real rocks.

There 1s no theory to describe these: additional elements,
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nor any experiments that have measured them except in very
special cases such as backscattering or scattering from
well defined geometrical metallic objeets. We can only
hope that effects due to non-sphericity will be super-
imposed on the results we get for spherical objects and
that they will be of magnitude and direction such as to
not invalidate the results. Certainly we do expect depol-
arization by single scattering alone - due to the non-
symmetric quality of the scatterers. This effect is
absent for spheres in the case of direct backscattering
since we then have a perfectly symmetrical situation.
Although we must admit virtual failure in calculating
the full single scattering.polarization matrix, this does
not obviate -the results in any way. This suprising
statement comes from a comparison of single scattering
polarizations of initially unpolarized radiation with
multiple scattering depolarizations of initially fully
polarized radiation. Figure 3.9 shows percent polari-
zation of some of the phase functions used with the
index of refraction of the rock relative to the dust,
as a parameter. The maximum polarization varies from a
maximum of 60% to a minimum of 7% for different phase

functions. Yet there is. only a small difference in the
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multiple scattering depolarization (see figure 3.7) ahd the
differences are correlated one to one with the backscatter
cross section (see figure 3.8) and not the single scattering
polarization (see figure 3.9). Figure 3.7 gives the ratio
of polarized to depolarized power returned in range rings
for circular and linear polarized power transmitted and
recelved. The backscatter  cross section-is. evident in
Figure 3.8 as the backscattering peak-in the plot of the
single scattering intensity phase function.

This argument implies-that the depolarization results
from the randomization in direction of the incident beam.
As we have argued above, we calculate the randomization
in direction correctly. We also argue that we have
calculated the backscatter cross section correctly be-
cause 1t correlates fairly well with the reflectivity of
a dielectric surface given by Fresnel's laws for ray
optics. - We expeet non-spherical roeks to-follow Fresnel's
laws so we expect that the backscatter.cross- sections we

calculate will be similar to those -of the actual rocks.



IV SINGLE SCATTERING.- CALCULATIONS

Below we develop.the. single scattering phase function
and albedo: for a.collection.of absorbing. particles in-
bedded in an absorbing mediums:- We . assume that the bulk
of the scattering comes from rocks:buried-beneath the
surface of a.layer of dust of uniform index of-refraction,
n,. The rocks have an index of refraction relative to

s
the dust of ﬁr = n, - ini in terms of the real and imaginary
parts of the index of refraction.. The imaginary part, nys
is unaffected by ng since the absorption per unit length

in the rock ié dependent on ng along, independent of n,

and hence ns;

A

3.3 ny T HwZa where Ka is the absorption length.

We assume the dust to be. absorbing, the functional
dependence of the-absorption.leﬁgth“with wavelength being
. given approximately by Za = £ox (Cambell and:-Ulrichs, 1969).
Ka may be proportional to a slightly higher power of X then 1,
but we shall ignore this possible difference to decrease
the number of parameters. It is not an important effect.
Lastly we take for our distribution of sizes the law

3.4 n,(a) = nga >
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The number of rocks per unit volume with a radius between

£

. . s o v
a and a + da is nV(a)da. Having specified nv(a), n,, £,

and A, the single scattering phase function albedo, etc.
are completely determined.

In developing the simple scattering phase functions
that were. used throughout this work, a computer program
written by J. V. Dave (communicated through I.B.M.) was
used to provide the mie scattering information for single
spheres. The only inputs necessary. for this program are
the index of refraction %r and the size parameter ao,
Briefly, the program obtains the far field scattered rays
by matching boundary conditions in the interior, on the
surface, and at infinity for the incident, internal and
scattered rays.

In terms of the mie scattering phase functions pl, P,

2

P » p and the scattering and extinction efficiency factors
3 i

QS and.QX for single particles we can derive the results
for a polydispersion of particle sizes as follows: The

unnormalized phase funetions are, for i = 1,4

1 e

3.5 Py =) Pi(a; 8, 2) ny(al)da

o
n

The phase functions Pi are normalized to a single scattering

albedo of 1 such that they satisfy. the equation
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2T mo 1 \
3.6 l=%‘¢?j JPI(G) * P(0)) 5ip gasde
[e] o] 2

where sin 6d6d¢ is a differential solid angle. The single

scattering albedo, neglecting absorption in the dust, is

j’ Qg (a;1)ma®ny(a)da

3.7
-[ Q (aj3r)ma®n (a)da

Note that Pi and w, are not functions of A, only in the
very speciai case of a power law distribution of particle
sizes of the form we have chosen. This is true because
we may remove A from-the above integral and change the
integration variable from "a'" to "a".

The single scattering albedo w, is only a function of
Hr and s, the exponent of the power law distribution. The
absolute value of number density of particles given by the
coefficient no, is nowhere dincluded since so far we have
assumed that there is-no absorption between particles and
hence their relative pécking is irrelevant, assuming point

particles. "With the introduction of absorption between

scattering events the single scattering albedo becomes

3.8 J’OQSCa;A)naFnV(a)da

J(OQX(a;A)naznV(a)da + 1/80
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It is worthwhile to note that now @, 1s also a function

of no and A, the dependence being given by

-3
neA

3.9 0, = —
neBA"

+ C

Since w, now depends on many parameters, we have chosen
instead to parameterize our results in terms of arbitrary
choice of W,. We show in the section IX that while the
choices of @, used are arbitrary, they are by no means
unrealistic. Thus the phase functions Pi used 1in the

first chapter of the thesis are normalized such that

27 i
5 1 P,(6) + Pa(0)
3.10 o = 1= sin 6d6d6
(o] [o]

2

We take Pi as the starting point in the polarization doubling

program.



V. SCATTERING.MATRIX FOR.BURIED ROCKS

In the previous section we described the transition
from single scattering on single spheres to single
scattering on many spheres. We obtained the phase functions
Pi necessary as input to -the polarization“doubling program.
With the computer program-developed.in:Part. I in hand, we

' ‘

obtain the scattering matrix 3 (U s Uos ¢o—¢]),,defined
in Part I in terms of the Stokes vector I = (I,, I,, U, )
where (Uo, ¢o) and (u,.9) refer to directions of incidence
and emergence respectively. With this as our starting
point we will adapt §, in. this. and.subsequent sections, to
our model -of the lunar surfaee. In this seetion we shall
derive. the scattering matrix- for scatterers imbedded within
a ‘medium .with index of refraction N« -We -discuss the form
of § for our special case-and derive. the -transmission
‘matrixes from Fresnel's-laws-of- -reflection.,

We first examine the scattering matrix we shall be
working with. We use the variable uj = cos-e' to remind
us that we have described scattering inside-the layer, the
variable U = cos 8 being reserved now. for radiation outside
the layer. We no longer need the scattering process to be

1 . t
defined: for all angles U , Mo, ¢o and - ¢ sinece-we are only

|
interested in backscattering. In this case pu = u, and

209
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1
b - ¢ = 180°, and we may speak in terms of the restricted

= !
matrix S (4 ) only. It is an almost diagonal matrix, the
only non-diagonal elements lying in the 12 and 21 positions

when the Stokes intensity. is written [Il, I U, V]. See

r?
Part I of the thesis where these guantities and § are
described in detail. The notation 1s basically the same

as that used in Chandrasekhar's (1960) book on radiative
transfer (see, e.g., pp. 24-42). Eight of the sixteen
elements are zero because they are odd functions of ¢ and
since -180° and +180° are equivalent values of ¢, the
values of the functions there must be zero. This does not
explain why the elements 34 and 43 are zero however, since
they are even functions of ¢.

The nullness of these elements is apparent from thé
following "Gedanken Experimente" due to Hagfors (1967b).

We expect that if the surface is-illuminated with
either right or left handed circularly polarized light the
excess of one linear component over anether will be thé
same in both cases. The incident ray then is I = [1, 1;'0,
i~/§] in the [I,, I., U, V] representation we have been
using. Then taking into account the zero terms already

mentioned we have for the two polarizations

3.11 U ~ qu = "Ssu
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where-U is.the excess.-of. the two linears._on axes U45° to
the- normal axes. .Thus.S34 =0 and-.,Sk3 =-O-by'symmetry.l

- '
Matrix S (B ) is now of the form

11 12

21 22

Ll
1l
N

3.12

o O nn
O nn O O
n O o o

by

We wish to combine S with Fresnel's Laws of tranhs-
mission and reflection for a layer-of dust with index of
refraction.ns. In deriving the- transmission coefficients
explicit account must be taken.of the change in the solid
angle of.the beam as it enters and.leaves the medium. This
is- usually not done. Transmission coefficients derived in
most optics.texts  .are.applied. to.the magnitude of the
electric field squared which is not. strictly a measure of
the intensity as we have been using it. The ‘definition of

intensity here; which dis more properly called the specific

1 The gzeroness of S is an important check -on computational

3y _
accuracy.. Each Fourier coefficient is non-zero in this

element. It is only the sum of all the Fourier coefficients
that produces the null value.. This-is.the only a priori
known quantity in all the computations and can serve as a
check on the choice of all the internal parameters needed

to actually run the polarization doubling program on the
computer. .
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intensity, 1s a measure of the energy passing through a
surface per unit time per unit solid.angle. The question
for our purposes 1is perhaps academic because the product

of the transmission coefficlents. in and out of the layer

is the same for both derivations, although the actual
transmission coefficients differ from those usually seen by
factors of Ng -«

Let 6 and e'be, respectively, the angles of incidence
and refraction that the radiation makes with the surface
normal as it enters the dust from space. We derive the
transmission coefficient from the reflection coefficient
by writing the equation for conservation of energy across
the interface, taking explicit account of the change in
solid angle of the radiation.

1 1 :
3.13 Ir cos 6 dw + It cos 6 dw = Il cos 6 du

where r,t, i refer to reflected, .transmitted, and incident
' ,
respectively. and dw and dw. are the differential solid angle

occupied by the beam outside and inside the layer.

1] 1] |
3.14 R cos 6 sin o6de + T cos 8 sin 6 ds = cos o sin 6 de

Now,

1
3.15 n sin- 8 = sin ©
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by Snell's law, where we have dropped. the subscript s from
ng for the remainder of the derivation. Differentiating

3.15 and substituting in equation 3,14 we find

3.16 ' T = n?( 1-R)

The usual Fresnel réflection coefficients as a function of
the angle of incidence: 8 for polarized parallel and perpen-

dicular to the meridian plane of incidence are

2
n® cos 6 - /n? - sin?@g

R =
1 «
n? cos 6 + /n? - sin?e
3.17 _ 2
R = cos 6 - /n? - sin?e
r
cos 8 + /n? - sin?e

where 1 and r refer to the last letter of parallel and

perpendicular. Then we get from 3.16 and 3.17

o1 Un* cos 6 v/n? - sin?o
1 _
(n? cos 6 + v/n? - sin?6)2
3.18 v
1. 4n% cos 6 /n? - sin?@
r

(cos 6 +,/%2 - sin?0)?



214

The superscript 1 refers to transmission. into the layer,
The two coefficients Tll and Trl describe the

transformation of the two Stokes parameters I, and Ir as

1
the radiation enters the medium. We derive the transformation
of the Stokes parameters U and V from their definitions in
equation 1.2. If we take note of the tacit assumption

which we have been making in the derivation of the trans-
mission coefficients, that the imaginary part of the index

of refraction is zero, no phase changes are introduced across
the boundary. The derivation then is straightforward.

The definitions of [Il’ I U,.V] in equation 1.2

r,
yield
2 2
t _ t _ (o} _ o]
I, =& =TyE =T I,
2 2
t _ t _ o] _ (o]
1, =E" =T E, =T I
3.19
£ RTINS ¥ o
U* = 2Re (B, Ey ) = (T, T)?0U
& t bE. Yo
ve =21 (B CE]) = (T, T)%V

Superscripts t and , refer to the transmitted and
originally incident rays respectively, * means complex con-
Jugate and E is the electric field strength. The superscript

1 on T was suppressed. These results show that
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3.20 T = T = (T' T

and the transmission matrix for. the.four stokes parameters
is a diagonal matrix which we shall call ﬁi(e).

The transmission matrix. for radiation leaving the
medium, T° (8), is derived from 7l (8) by inverting the
index of refraction writing 6' for 0 in equation 3.18 and

i !
using Snell's.law to re-express 6. as 6. The result is

3.21 | T = ﬁ/ﬁ*.

The final step.in._deriving the scattering'matrii of

buried scatterers, B, is to combine the transmission and

scattering matrices.

° (g) § (&) T (0)

=1}

3.22 B. (9) =

We mean by S (6) that we have changed.the- dependent variable
from“e{”to g so that.ﬁ,(e) is related.to: S (ef), the résult
of the doubling program,.through. Snells. law.. This réquiréd
interpolation of values in .the computer program. Thé form
of B is the same as that of4§ﬂgivenlby equation 3.13 since

both transmission matrices.are diagpnal.



VI - SCATTERING MATRIX.FOR A CRATER

The model for radar scattering in the lunar surface
has begun to take shape. Already in the modeling we have
accounted for the subsurface nature of the scattering pro-
cess. But up to this point there has been no need to de-
cide whether the scattering is occuring. in discrete loc-
ations or quasi-uniformly over the eﬁtire surface. In
the development of the model the choice was made for us.

It was found, contrary to expectations, that a very
high single scattering albedo, &, > 0.7, was needed to
match the ratio of polarized to depolarized return power.
This would give a radar cross section 2 orders of magnitude
higher than what is observed. The need for discrete sources
is immediately apparent, and the areas in and around fresh
young craters a-logical choice.

In this section we shall obtain the scattering matrix
of the crater. To do this we discuss the meaning and use
of B in greater detail and show how to integrate it over
the surface of a crater. We require a matrix C which des-
cribes the scattering from a crater occupying the same area
element that matrix B is referred to. We must take account
not only of the angle that the radar beam makes with the
local crater nqrmal, but also of the angle that the aver-

age local lunar meridian 1 plane of incidence makes with

216
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the local meridianol plane of incidence-insideﬂfhe crater,.
These are the basic points involved.in the integration over
the crater. The derivation is as follows.

In order to do the crater integration we must first
understand the physical meaning of B and C. The diffuse

intensity scattered by an area element dA back towards the
observer from the buried scatterers is
3.19 I=p-BF
where F is the incident flux and u 1s the cosine of the
angle that the difection of propagation makes with the
local normal. The energy that is observed from this area
element 1is proportional to the intensity, I, and the pfo—
jection of the area onto the plane normal to the line of
sight, udA. Thus the energy returned from a randomly
oriented. surface element dA is proportional to §dA and
it 1s this quantity we wish to integrate over the crater.
In an equivalent manner, we define the crater scattering
matrix 6 such that the energy coming from the crater as
a whole is proportional to FAO, where A, 1s the area of
the- smooth lunar surface removed by the crater.

Before we write down the form of the integral for C
we must more completely understand how to make proper use
-of E, -These considerations.weuld be absent if we were dis-

cussing intensity only. The scattering matrix B is express-
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ed in terms of a local coordinate. system defined by directions
parallel and-perpendicular to the:local meridian plane of in-
cidence and emergence, that is, the plane (or planes) defined
by the direction(s) of propagation and the local normal to
the surface. We want to refer each scattering element in the
crater to the. local meridian.plane.of the craterless surface.
We must therefore rotate the coordinate system fixed on the
lunar surface into the coordinate system of the crater scat-
tering element and, the scattering:having been completed,
rotate 1t back-again to the -craterless surface coordinate
system. If § 1s the angle in the plane transverse to the
direction of propagation that the meridianol plane of the
-crater element makes with the. meridian plane:-of the crater-
less lunar surface element then the scattering matrix of

an infinitesimal portion of the crater is, in average lunar
surface coordinates, f(-Q)-g-f(Q) where L is the rotation
matrix of equation 1.9.

We may now write down the form of the-.integral for 6,

3.20 cn) = U~L(-9-)-B(1)-L(Q) dA

where n 1s the cosine of the angle that the-local crater
normal makes with the line of sight.

The integral for 6 is quite general for any crater
shape. What remains is to discuss i, n , dA and the integra-

tion limits for a particular model.
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We assumé that the crater.is parabolic with a diameter
to depth ratio of M’following Moore (1969). This is approx-
imately true for small fresh craters, but fails to hold in-
creasingly as flat bottomed floors develop 1in larger craters.
The crater has a depth h and a diameter-d. If x and y are
measured along orthogonal directions on the- flat: lunar sur-
'face and z is positive upwards,.then the equation of the
paraboloid is

3.21 : f(x,y,2) = z - ax? - ay? =0

where a = 4h/d?%.

To express n, & and dA in terms of the variables x
and y, consider the unit vector A parallel to the local
normal to the surface of the pafabolqid.A

8 = Vf _ =2axi - 2ayj + R
v r] vEa?x? + Ga’y? + 1

3.22

A
@

where 1, J, k are unit vectors in the x, y, z directions
respectively. Assume the radar beam is incident in the
x-z plane. The direction of propagation is parallel to

the unit vector 1 given by

3.23 -1 = sin6 1 + cosf k
where- 6 is the angle-between the nermal to the x-z plane
and 1. Note that cos6 = w, the variable used previously.
The cosine of the angle between the loeal normal to the

surface-and the direetion of the beam is
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-2axsin® + cosb
via®x® + ha“y“ + 1

3.24 n =10 =

The area element dA is.the real area on the surface
of the paraboloild above the area element dxdy-in the x-y
plane. Using-unit vector n normal to the crater surface,

and unit vector E normal to the x-y plane we have

3.25 da = %5%1 =/4a“x + Ha“y® + 1 dxdy
n* k

The derivation of {i requires a bit more thought. Q
is the angle that the projection of n and .the projection
of k make in-the plane normal._to. 1. Noting the form of the
vector i, the direction of propagation, we may write down

immediately two mutually orthogonal vectors ﬁl and ﬁz which

define the transverse plane L.

"N

cos® 3 - s8inb6 k

L1
3.26

A

L =]
The sum of the projections of n and k on L; and L,

determines the projected vectors. The projeeted vectors

are then

3.27 h> N = (2axcos® . + sin® )-L: + 2ay L.
vha“x® + Ha‘y® + 1

R - ﬁ -sinb il

We find © by the -veetor theorem -
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N+« X

cosfl = TNTKT

After a little. algebra- the equation for £ becomes

: (
3.28 o 9= el 2ay
(2axcos® + sinb )

Note that @ is an odd function of y. Because the beam is
incident in the x-z plane the crater is symmetric about this
plane. Thus for. every:point (x,y) there is:a-pﬁiﬁt (x,-y),
and for every. 2 there is a -, In the computations there-
fore-all odd functions of £ will be zero and can be discard-
ed:before the-integration begins.

The integration limits remain. We.will not derive
them here as it ‘is a question-of: simple-though tedious
analytic geometry. With the inclusioen of the<integration

limits.the equation for the:eraber‘scattering matrix is

ComhE ) m2a q(n) -
329 T [+  L(-=9+B()L(D)
: -h/a 0 m_/ﬁz g(x)
a .
«vYia“x® + Tafy* + 1 dxdy
where |
e =T-G-D L aw = Eo e

and m = cotf, and n (x,y) and Q(x,y) are given by equations
3.24 and 3.28.

The integration was performed numerically using Gauss-
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ian quadrature in the variables x and y. Unfortunately
using x and y as Gausslan points in variable intervals
meant that n(x,y) did not necessarily. coincide with the
points at which matrix § was. known., Consequently the value
of the functions at each integration point was determined
by fitting a parabola to the three-nearest points. We can
write the formula for this- interpolation in a very compact
form, since it is a special case of the Lagrange interpol-
ation formula. If the function f(u) is known at 3 points

Hi, H2, M3 surrounding the desired point n, then

2 on - uy)
3.30 fm) = } fluy) x I ——=gn
i=1 J=1 (uy- uj)

This formula has been used extensively throughout much of
this work, although we explicitly.mention its use only here.
To conclude this section on the integration of the
scattering matrix over the crater we-discuss below the form

of the matrix product C' = L(-R)-B-L(Q) and hence the form of

1

the equivalent crater scattering function 5. Combining eq-
uation 3.12 for S and equation 1.9 for f and neglecting all
odd functions of Q@ we get the components of the matrix

product. The non-zero elements are the-same- as those for

S given in equation 3.12 and the components are, explicitly



Cl:
Ci2
3.31 Ci,
Cis
Cla

Cluy
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B11cos"0+(B12+B21)sin?Rcos?Q+B,251in"2+3Bsssin?20
B22cos*R+(By2+B21)sin cos®+B;15in"R+5B335in?2Q
Bz1éos“Q+(B11+Bzé)sinzﬂcos29+B1zsin“Q—%Bgasin22ﬂ
B33c08220+5(B11+B22-B12-B21)sin%2Q

Ci:

Buyy

We note in passing-that if. the crater is asymmetrical

with respeect to the meridianol plane of the line of sight,

then the form of: C is changed from a non-zero-2x2 matrix

situated-on the upper diagonal to a 3x3 matrix on the diago-

nal.



VII THE MATRIX ELEMENTS AND THE: RADAR EXPERIMENTS

We are -now capable of relating scattering matrices
B and C to most of the observations that can be made from
the earth. The only exception. is that we cannot give
absolute cross sections since we have not as yet accounted
for the distribution of craters across the lunar surface.
We will do this in section X. We here discuss the relation
between the matrix elements we have derived and the radar
experiments themselves. The-comparisons between calculated
and observed values will be discussed in the next section.
Some of the discussion gilven here parallels in part a
paper by Hagfors (1967b), but was independently arrived at.

We shall be discussing the matrix elements of a new
matrix M which combines: the' scattering properties of the

crater and ejecta blanket threough the equation
(l—Fc)

F
c

3.32 M= C +

on

where Fc is the  fraction of the total power returned from
the crater. For want of a very detailed description of the
average fresh crater, we-alse take Fc to be the fraction of

the-area of the crater and its ejecta blanket occupied by

the crater,

224
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There:are-five - independent- matrix elements. Therefore
-five-independent- experiments” are-required.to measure them.
-They- fall into two catagories =--measurements-averaged over
a range annulus-and localizedrmeasurements-of“small area
elements requiring the - full power of the range-doppler
technique (or -other methods).  We-.discuss.below.the averaging
of M over:aﬁ'annulus. M 1s' sometimes referred to as. the
Mueller matrix, although strictly: speaking we should reserve
the term- for:the properly normalized matrix.

.Define: ¢ to be the angle-in-the.plane transverse to
thejdirectioh~of“propagation‘that“the-vector~parallel to the
.local meridianol plane- of incidence makes. with an arbltrary
-direction, the direction  of .the-libration axis for example.
Then with the considerations:of the previous.section as to
-the meaning-and use - of the scattering matrix we may write
down. that:-the scattered: Stokes-intensity at any point is

3.33 TS - %E T (-¢)-% (w)-L (¢) T

The scattering matrix for the entire- annulus is.-then propor-

tional to M where
27
3,38 W= I (-0)-FLg) as

[e]

and. the- result is; once again,.an-almost diagonal matrix
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whose elements are:

MG = ME = %’ (3Mn + Miz + May + 3Map + UMy3)
M = M3 = % ( My + 3Mp + 3Man + Mp - 4Mg )
332 R (@M= 2Mp - 2My + 2Mp + 8Ms )
MG = My
and Mz = M5 - %

This matrix, however, is different from previous matrices
in that in the [I, Q, U, V] representation it is diagonal, with
M% = M% as expeeted from the quite similar physical meanings
of Q@ and U. (Q and U it will be remembered are  the differences
in the linear polarizations in two orthogonal. coordinate systems
making an. angle of 45° with each other.) The equations to
follow would be slightly more compact if written in this
representation, but we will avoid this to reduce the incidence
of new notation.

The averaged Mueller matrix, ﬁa, is examinable by two
experiments. In the first, eircularly polarized power is
incident and both right and left circulars are received. The

1 1

incident intensity is [2, 2, 0, 1] in the (1,, I, U, V]

r’

representation. The ratio of polarized to depolarized power,
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rc, can be written down immediately if we remember that V is

the excess- of- rightrhanded over: left-handed circular polarized

power.
S
¢ I -V
3.36
» o Mi+ mE+ ok

¢ M+ ME - 2My

In another conceptually similar, although physically
more. difficult experiment. (due- to Fareday rotation in the
Earth's ionosphere)-a-linearly polarized beam, [1, 0, 0, 0],
is used to illuminate the moon and both linears are received.

The ratio of polarized:to depolarized.power, r

12 is
po= L L%
17T TT—9
3.37 .
r = M-
1 M%

Implicit in the two equations is the total power received

per unit area, o, which is given by fhe proportionality

3.38 | o(u) « MG+ MG

For the second of the-two categories. of experiments we

use the*unaveraged?Muellerrmatrix,;Masto~deseribe scattering
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from local areas.- In-one experiment cireular polarization is
incident and the-two linears are reeceived from the libration
axis (or any other suitable axis), the antenna polarization
oriented parallel to this axis. The ratio of the power in the
is

linear polarizations, r.1»

3.39 p o= M + Mo
cl Moo + Mo

Note that this ratio is equal to unity for the data
averaged. over an annulus.

The last of these experiments measures the depolariza-
tion of linear incident power. The ineident radiation is
linearly polarized parallel to the libration axis and the
state of linear polarization .of the: returned power is measured.

The ratlo.of. the two linears, r is given by,

11°
3.40 r.. = o4

From the point of view.of the-experimentalist,
equations.3.36- to 3.40 are five equations. in five unknowns for.
the determination. of the Mueller matrix elements. That they
are independent is not immediately clear from the form we have
written them in. If we were to write them in matrix form,
the uniqueness of the solutionwould become immediately obvious.

-To save space we will not pursue: this matter any further.



VIII .THE. ANGULAR. VARTABLES-OBSERVATIONS. AND. CALCULATIONS
COMPARED

We come now to the firstuof.the'results. We shall
present in this section, mostly.in graphical form, a par-
ameterization of the end product.of. the. computer calcula-
tions and comparisons with observations. The variables

r and .c(y) defined in section VII will

c? T12 Te1» T11°
be discussed. We shall see the degree to which a consist--
ent and physically.reasonable set.of parameter values is
able to match the observatiens.. Unfortunately, since there
are -many more variables than there are-knowns, the choice
will not be unique. The.usefulness.of.our,resulté<will

lie in their ability .to. explain differences from the
average lunar scattering behavioer. ' The -section ends. with

a discussion of the applicability of this model to Mars

and Venus. We reserve till section X .the discussion of
absolute cross sections.

There are two types.of. parameters involved here. The
first set are those that were-given as input to the compu-
ter program and whose effects we:.-will examine:below. They
will be varied independently. The second set - -includes the
first but shows more clearly the interdependence of the |

parameters. The parameters that we vary are n_, n Wg sy
f S

r,)

Fc’ s and t. The more complete set includes'no, £ A, n

a?’ i

as well as &o(no,ﬂa;x,ni,nr,s)o We take a-detailed look

229



230

at @, in section IX. The definitions of these quantities
have been given before, but will be.repeated here: ng =
index of refraction of surface layer; n, = index of re-
fraction of rock relative to ngs W = single scattering
albedo; FC = fraction of crater and its ejecta blanket
covered by crater; s = exponent of power law distribution
of rock sizes; T = optical depth of scattering layer; n, =
coefficient of power law distribution; Ka = absorption
length in the dust; n, = imaginary part of the index of
refraction of the rocks.

The non-uniqueness of the solution means that one
choice of parameters to fit the observations may do quite

as well as another. Yet we are forced to make a choice

-because the large number of parameters-to be investigated

makes 1t impractable to display or calculate the whole hyper-

space of solutions. Therefore we-have selected a "good"
set of values that make a reasonable fit to the obser-
vatlons and .we-display the result of varying each para-
meter independently while the other parameters are kept
constant. The "good" parameter values are then the origin
or "zero point" of a coordinate system and we shall invest-
igate~the-results-along axes centered at this point.

An exception to investigating conditions along these

axes 1s our decision to display much of the results with-
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out the addition of crater scattering.. We.do this because
the crater destroys much angular dependenece-that might be
of interest at some later date in connection with boulder
fields -unrelated to craters.

-The zero point set of parameters is: w,=0.79, ns=lc6,
nr=l.6, Fc=0°5,T=W, s=l,4, .We shall discuss the physical
"plausibility of this choice in this and:later sections.
Briefly the choices are justifiled as follows: ®, corres-
ponds to a point .in.a range.of values calculated in section
IX-on the basis of Surveyor and Orbiter-rock size distrib-
utions and Apollo 11 and 12 .data for the ‘complex index of
refraction. of rock and dust. The Apollo data give a range
for ng and n., that-includes -our choicesd'~Fciagrees with the
value -calculated from the radar return from Tycho and its
ejecta blanket (section X). Finally.we.will see in this
section that results for t=» are close to results for t=U,
~the optical depth. of the smallest-crater we consider (sec-
tion X). The choice of the parameter s follows the observed
~distribution function for Surveyors:I, III, V, and VI (Sur-
veyor Mission Final Report, 1968) which' gives s=U4.1,4.5,4.6,
4,5 respectively. The effeet of s over-a range s=4.0-4.6
was found to have little effect on.any eof the computational

results; we will discuss this. later-in this section.
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The most important single question is whether our
calculations can match the observed depolarization ratio
in the different experiments. .Figures 3.10 and 3.1l each
give observed and calculated values at 23 cm. for circular
in and out (i.e., transmitted and received) and linear in
and out respectively, averaged over. range rings. The sin-
gle scattering albedo 1s varied. Here, as in all subsequent
comparisons involving the polarized component, we must ig-
nore the observations in the region near cos® = 1. The
gquasi-specular return dominates the polarized component in
this region. Also, the calculations.for cos® < 0.1 should
not be taken too seriocusly since the effect of an undulat-
ing terrain and surface rocks, not accounted for in the
model, most certainly becomes important here.

The 23 em. and 68 cm data shown in figure 3.10 as
well as the 3.8 cm. data (not shown) have a circular depol-
arization-.ratio, r,s of about 3 db (Hagfors, 1967a; Zisk,
1970). The linear depolarization ratio, rl, measured only
at 23 em. 1s about 7 db, or 4 db greater than r.. For
We=0.79 as well as for other choices of gzero point pagamet—
ers for best fit, ry = r, = 2db, and thus no one choicé of
Weo can exactly match both sets of data simultaneously. We
see that although a single choice of W, can explain the

large depolarization and even the correct sign for r. - r

1 c?
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it falls slightly. short.of a perfect explanatien: This may
be reasonable given the.obvious departure of lunar rocks
from perfecﬁ'épheres. Single.scattering. then still must
play a. role in the. depolarization.

.. We.have. succeeded-in obtaining more. eircular than lin-
ear depolarization with multiple scattering between spheres
just as Hagfors (1967a) has succeeded-using single scatter-
ing from dipoles. A combination of the two effects could
add in the correct sense and account for the other 2 db.

We envision the dipole like depolarization as follows. At
any given wavelength most of ﬁhe'poWer is returned from
rocks with. a =2. For o > 2 and.s.> 3 the:total cross sec-
fion decreases due.to the power law distribution of rocks,
while for o < 2 and s < 7 the decrease is due~to the rapid
decrease of the rock cross section. with a.> ‘A rock with a
long dimension such that o = 2 may. have aamuch'smaller“cross
seetion along its short dimension where a < .2-- The decrease
of cross section with o is very rapid for o <'2, much more
so than for o > 2. The dipole effect then is:due to those
elongated rocks with o = 2., Elongated rocks such as those
invoked in this discussion may be seen in many of the pic-
tures taken in all the Surveryor missions - (Surveyor Project

Final - -Report, 1968).
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We next present the effect on r, of changing the zero
point parameters one at a time. The effect on ry is com-

pletely similar where not shown. Figure 3.12 shows how r,
varies with the dielectric.constant of the surface Ngs for
Fc = 0, The striking difference between ng = 1l and ng >1
is easily explained by Snell's law to be due: to the very
large change in the range of angles of incidence as the
radiation penetraﬁés the surface. We will see this effect
often. The crater has the effect of removing much of the
angular dependence. We see this in figure 3.13 where Fc=0950
The depolarization ratio can also be influenced slight-
ly by the choice of the index of refraction of the rock rel-
ative to the dust, N, This is shown in figure 3.7, section
IIT. The non-monotonic behavior with n, was discussed pre-
viously in section III and found to be the result of the
backscatter cross section. The depolarization decreases
as the backscatter cross section increases. We would ex-
pect this result for radiation multiply scattered back
towards the source by objects that exhibit no single scat-
tering depolarization.
Figure 3.14 shows rc for W, = 0.9 as the optical depth
is varied. The depolarization increases less quickly as T

increases and reaches its limit near 1 = 4. Thus we will

be justified in using the results for 1 = ». The parame-
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ter s has practically no influence on the results for s
between 4.0 and 4.6. This-is.not surprising because the
backscatter cross sections are all about the same for the
different values of s, even though the maximum percent pol-
arization changes by a factor of 2.

Another touchstone of. our success in explaining the

observations 1s the depolarization ratio, r for linear

11°
in and out measured along the libration axis. Figure 3.15
shows calculated and observed values for this case. The

average -over a range ring, rs is included for comparison.

There appears to be a real upwards shift in. r over r. al-

11 1
though the spread in the data points is greater. The calcu-
lated values also show this.effect. The spread-in the data
points may be due to noise, or, may be real. -In the latter
case; the spread may be analyzed aeccording to a single or
multiple scattering approach. If one attributes the scat-
ter to a single scattering mechanism then must suppose sys-
tematic differences in the shapes of large numbers of rocks
from place to place. On the other hand our explanation
would be that there are systematic differences in the rock
distribution and/or rock composition from crater to crater.
We feel this 1s far more plausible.

The increase in tﬁe calculated and observed values of

ri, over rl is just the result of Fresnels laws and is fur-



241

‘uosTaedwed JOJ pPepnTouT Awwwmﬁv sJ0J3eH wWog] BiR ‘ABTop JUB]SUOD JO TTTIMERE UT Unm STX® UOTARJIQTLT

BUOTE S3USWSTS Bade J9A0 peBedeasr Jomod pozTaerodep 03 pszraerod JO OTjex pajernole) GT°E a3ty

g S09

SO0 o 20 o .
T | 1 T — T T T2
~ . -  Bujy abuoy A P34p|ndI0Y ~--- e
| . . Diop WO g2 © _
. . , s
B uswa|g pasy { PAOINVIDY — —Hy =
- a3 pauy { e T s
| | , [o]
| 9'1=%u ' g0+4 '6.,0=m 5
, o | 5
B P
- T Illu'q """ Q‘Iq‘m'dqllﬁ llll 'l"lll"'l"" o
v =2
o Fv 3,
j _ O o o . m,
- o DJ 0 boo o u_u_ mww —i8 “r
1-&‘ [u] 0 o o o % r
. 0o 50 5 -
o ’ o
i ; i g Jo e
o
B o =11
_ _ l l 1 | 1 11




242

ther proof of the subsurface nature of the scattering pro-
-.cess. We can see thils readily if we compare the variation

of ry and r;, with n_ in figures 3.12 and 3,16, (Figure 3.12
1s really drawn for r.s but only the variation with ng is

of interest here.) ry decreases-monotonically with ng most-
ly as a consequence of Snell's law, as we mentioned previous-

ly. This is not the whole story for r The effect 1is

11°
stlll there as wiltnessed by the behavior of ng = 1.0 and
ng = 1.2, But as Ny increases further the depolarization

decreases, not increases (i.e.,r increases).

11
For riq data 1s taken along the libration axis where
a plane of incidence may be defined, unlike- data taken for
ry where the average over a:range ring makes the definition
of a plane of incidence impossible.. :Radiation polarized in
the plane of incidence is.preferrentiéily transmitted through
the surface. Thus any radiation.that .crosses over to the
otherhpolarization will find it harder to escape the sub-
surface layers than radiation polarized in the same mode
as was transmitted. Any depolarization would be decreased,
the- - effeet increasing as ns:increases°
In line with the previecus.diseussion. we would predict
that incident radiation polarized perpendicular to the lib-

ration axis would give more-depolarization than the average

over a range ring. The conclusion.from all . this, that the
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scattering process 1s subsurface in nature, is certainly
not a new one (see, e.g., Hagfors et al., 1965). However,
we emphasize that the set of data we have been analyzing
has never before yielded this result. Presently we shall
discuss an experiment that shows the subsurface scattering
more clearly.

It is mostly of passing interest to discuss the ef-

fect of the crater on the depolarization ratio r. The

11°
other parameters, wg, N5 S, and T, act exactly as they do
for r, and ry. Fc too acts the same, but since there is

more angular dependence here, we can see its influence more

readily. Figure 3.17 shows the variation of riq with FC.
The statement that can be made from these graphs is that
averaging over a crater removes almost-100% of the angular

activity of r and r.s except where-cosf = 1. This

11° T1°

also holds true for r to which we now turn.

cl?
The experiment that measures r. gives strong evidence
that the radar has been scattered beneath the lunar surface.
The problem with the interpretation, however, has been that
for 23 cm. wavelength an index of refraction, Ny s of about
1.3 (e = 1.7) is obtained rather than the value of 1.6 (g =
2.6) that cross section data, taken at the same wavelength,

gives. Hagfors et al. (1965) state that the two conflicting

values eanh be reconciled if a two layer model is postulated.
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The larger value of ng due to observations of the absolute
value of the radar.cross.section would then be due to an
upper layer with ng = 1.3 and a lower layer with ng = 2.2,
Unfortunately, it.is difficult to achieve this high a value
for Ny from lunar dust. Combining the value given by Costes
et al. (1970) for the maximum density achieved in packing
the -lunar dust returned by Apollo.1ll with the curve of den-
sity vs. dilelectric constant given. by Gold et al. (1970)
for Apollo 11 fines, the maximum index of refraction is
ng = 1.7 (¢ = 2.9). Values as high as ng = 2.2 could only
be achieved under much higher pressures than would be ex-
pected one half an absorption length down. The depth cor-
responding to the two way absorption length of 2.3 m at
23 cm. is 1.2m, so that Hagfors would.need to postulate
bedrock just a meter into the surface. Estimates of the
depth of the regolith, however, are generally greater than
this (Quaide and Oberbeck, 1968)

We shall show that it is possible to interpret all
the 23 cm. data in terms of one value for the index of

refraction. The radar experiment that measures r con-

cl’
sists of illuminating the moon with a circularly polarized

beam and measuring the ratio, r of the two linear com-

cl?

ponents aligned perpendicular and parallel to the libration

axls. If the radar was being returned by -single scattering
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from surface rocks, no.difference in. the.linears would be
expected. ‘The-situation would:be.expeeted.te change in the
scattering is subsurface since Fresnels:laws of transmission
-are different._for.the two linear:polarizations aligned in
and normal to the plane of incidence. The data for 3.8 cm.
and 23 cm. along with .a.parameterization of the calculations
in ng for zero point conditions, is shown in figure 3.18.
The lack of a strong upturn in.the data.near the limb shows
that our neglect of surface rocks-is justified: since there
the slant optical depth: is:greatest-and .transmission through
the surface should have its.smallest influence.

The aetual position of the.curves  depends to a very
.large degree‘on.the ehoicesof,Fé-and to-a.lesser extent on
- Wo (See figure 3.19), and not at all on nr~and s. Thus
while figure 3.18 implies that taking n_ =-1.6 for 23 cm
(and ng = 1.3 for 3.8 cm) 1s consistent with the calcula-
tions, it by no means says-that these.are the- correct values.
In fact the variation with FC is so largeJthat"we instead
have used figures 3.18 and 3.19 to determine that Fc = 0.5,
This choice of FC is consistentAwith“a value determined
-from measurements -across the crater Tycho, discussed in sec-
tion X.

The variation of roq with. &, 1s alsoe shown in figufev

3.19 for Fc = 0. If no depolarization occurred-in the scat-
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tering then r. would vary as T2 where T is the transmission
coefficient. The scattering has the effeet of blurring the
polarization induced by transmission into the layer, and

thus r, varies as T to a smaller power than 2, though not

1
quite 1.
Finally noting the rather small polarization occurring
when the crater is the only source of the scattering, FC =1,
it is very difficult to say whether an observation showing
r,y © 1l means the scattering is not subsurface or that the
terrain is very crater filled or chaotic. Thus we disagree
with the statement of Hagfors et al (1965) that "the fact
that no systematic difference in the backscattering coef-
ficlents of the two polarizations is seen in the Tycho region
may be interpreted.to mean that- this-region.does not have
a tenuous layer..." . We feel that the averaging effect of
- the crater‘walls and the'chaotic,crater floor are at least
an equally plausible explanation. The high rock number den-
sity in that region, which we have taken as characteristic
of fresh craters in general, leads -to a multiple scattering
approach. The multiple scattering occurring beneath the
surface would lead.to a difference in backscattering coef-
ficients were it not for the averaging process over the

crater.
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We -come finally.in.our graphical presentation of ang-
ular variables-to the discussion: of the -diffuse power re-
turned. per unit area. averaged over a range-ring. The suc-
cess we have had is mostly due:to the-influence-of the die-
- lectric constant of the surface and- the shadowing and aver-
aging effect of a crater. The influence of the multiple
scattering. in determining the power n of cos™@ is restrict-
ed to reducing the T2 dependence arising. from the two way
fransmission. through the surface. to one between“T2 and Tl.

- The shadewing in the crater introduces approximately a
cosle dependence for intermediate and large values of 6.

Figure 3.20 is a comparison .between the observed 23
cm. circular depolarized cross section/unit area and our
curve- for the zero point parameters-for best: fit to this
and previous data. " The curve, given in db,.has been shifted
with respect to the data points to achieve a good fit. This
18 necessary since so far we have included no information
on the-actual fresh crater distribution that serves to det-
ermine the absolute cross section. |

The fit is reasonable.- While the actual shape of the
curve does not closely parallel the.data.points, the decrease
in the calculated cross section/unit area from-cosf = 1.0
to cos6 = 0.1 is about right. -The failure to match the

data -more closely is understandable-in.view-of the consid-



252

0 i ] I i ! ] ] I l

-1 ' -
2 0 23cm data Depolarized Circular
5 -2 ' ' = Calculated ~
2 Lge | Fc=05, ng=16, n;=1.6 _
5 o w,=079
& -4foo 0 _
8 -5 -
g o -
< —
o -
(&)
o —
T -8
p=)
w ——
= -9
5
S -0 -
[ =
° -
s -1
@ _
§ -12f—
S5 -13F -

Y P | S - —_— 1 1 1 1 $ ]

l 05 02 0.l 0.05
cos 8

Figure 3.20 Theoretical depolarized cross section per unit area for circular
polarization transmitted and received. Observations (Hagfors, 1967a)

included for comparison.
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erable topographic.differences in.lunar terrain and the un-
known angular variation of the absoiute reflectivity of the
surface rocks which have not been.accounted for in our mod-
el. The possibility . exists,. for example,-that on the aver-
age a rock lying on the surface will have a- larger cross
section near.the subradar point that it will towards the
limb due to the fact that a lower center of gravity is in-
herently more stable so that the large end.of. the rock is
in contact with the ground. :The regioen: beyond cosb = b.2
is most susceptible to the effects of surface rocks -and sur-
face roughness.and probably accounts. for the-positive slope
change at large 6.

The following: graphs. show the polarized and depclar-
ized cross section/unit.areaAfor.circular in and out. Where
not shown polarized.cross. sections are similar to depolar-
ized cross sectilons and follow-the-depolarized ones almost
exactly as can be seen and derived: from the curves of r,
and ry . The- linear results-as well.will not be shown since
there is no essential difference between cilrcular and linear
other than the polarized-=depolarized. power- -difference given
by'rC and rye

The two most Important- parameters-that affect the

shape of the theoretical curves are:Fc~and nsc.jFigure 3.21

shows. that parabolic craters alone. give an average cross



254

section/unit area that varies as cosleswhile~a flat surface
is closer to coso°76 and approaches cosl’56 near the limb.

We have chosen, on the basis of our discussion of r to

cl?
use FC = 0.5 as the fraction of the power returned from cra-
ters alone. Thus the exponent of cosf. 1s between these two
extremes.

Figure 3.22 shows the effeet of ng with=FC = 0, It
1s evident that we owe a great.deal of the angular variation
to ng - Multiple scattering occurring on top of the regolith
interface, supposing the calculations to be valid here,
would give more limb darkening than beneath the interface.
The two factors at. work here, Fresnels laws of transmission
and the decreased range of the angle of incidence within the
medium from Snell's law, combine in opposite directions to
give the results in figure 3.22.

The parameters w,, S, and T have little effect on the
angular dependence of the diffuse cross section per unit
area over a wide range of values.- This. effect, as we have
mentloned, i1s due to the strong reduction in angular var-
iation caused.by the index.of:refraction of the surface.,

We note that qualitatively the relative: cross sections are
affected to a-small extent by A Fc, and s and to a very
large extent by W,, T, and n.. The increase in cross sec-

tion is, as we would expect, in' the direetion of increasing
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Figure 3.22 Curves are
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Wo, T, and n.,. We-shall discuss:these: points again in sec-

tion X when we-consider.the:absolute- eross sections.

We have had much success:in explaining the lunar
radar data.. Mars,wWhichfappears»to.sharemmany surface
characteristies with the moon, may be: amenable to a sim-
ilar interpretation. Future observations of Mars with
improved. ground. based radar as-well. as bistatic radar ob-
servations employing spacecraft:near the planet may yield
‘much information'onrfreshfcrateré;rboulder'populations,
and surface compositien. 'We would advise caution, however,
in any.attempt to .apply a variation of this model to the
planet Venus--the most un-moonlike of all the terrestrial
planets. Observatlions of Venus show most of the terrain
depolarizes less than the moon (Jurgens; 1970). This could
be interpreted as.smooth relatively boulderless terrain,
rounded scatterers,-or in the context of our model a lack
of multiple.scattering from buring rocks. The higher rad-
ar derived index of refraction of the surface of Venus im-
plies that the surface-is considerably more compacted than
that of the moon thus arguing against multiple subsurface
scattering (Campbell; 1971). There are- also 1ocaliéed re-
gions on the planet where the depolarization is much great-
er than is found anywhere en the lunar surface. We would

be very reluctant to try to force our lunar model to ex-
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plain this. Instead we believe: the depolarization is

due to rough broken terrain, .a product of tectonic and vol-
canic activity unlike anything found on Mars or the moon.
In this view the depolarization-would be caused by mult-

iple scattering from surface facets:and surface rocks.



IX THE SINGLE SCATTERING. ALBEDO-THE. PIVOTAL POINT OF THE
MODEL

We saw in section VIII that our model revolves around
a single main point - a single scattering albedo that most
would agree is rather high. All the observations we discuss-
ed .section II were fitted in the previous.section by assum-
ing W, < 0.8. On the basis of data brought back by Apollos
11 and 12 and .Lunar Orbiter and Surveyor results we will
show ‘that high ®, values are likely.

The -dependence of W, on nr, Nis N, and s will be not-
ed and values.for W, will be calculated for observed lunar
rocks distributed according. to a fresh crater rock distribu-
tion function we shall deveiop. Possible:correlation of the
depolarization with heavy metal abundance will be suggested.
We will see»that‘we-are-able:to reproduce the. observed con-
staney of the depolarization with wavelength, yet predict a
marked decrease-with increasing wavelength - an effect not
predicted by a single scattering model. We also will suggest
another test of the model.

The- calculations discussed-previously were done by
assigning a value.of the single-scatteriné albedo to the

phase. function and varying N, n and .s independently even

S’
though ®, is a function of them. We.found, however, that

the depolarization is virtually unaffected by s over the
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range 4.0 to L.6; variations in n, change the angular depend-
ence by only a small amount; and n, over a realistic range
from 2.2 to 1.4 changes-the depolarization by only 1 db.
Moreover, with the-single exception of absolute:-cross sec-
tions, all the -multiple- scattering. calculations are relative-
ly insensitive to s-and n, over the above. ranges. On the
other hand ng does affeet the-polarization along the 1lib-

ration axis for circular in linear out, r but as we shall

cl?
argue in this section and the-next, ng is. rather well re-

stricted and we shall take-it to be 1.6 for 23 cm., This is
the value used .in our discussion of r.q

Since the- fit of our calculations is unaffected by s,
we are free to model ¥, with a-rock-distribution function
-That departs somewhat: from the one-aetually used to pro-
duce - the graphs. Specifically we take a-more realistic mod-
el to be one-that exhibits a break in the power law distrib-
ution similar to what 1s observed. We now derive nV(a).

In our model we’ assume that fresh young craters are
the source of the diffuse component. Consequently we must
take nV(a) to represent the-volume distribution within and
near fresh craters. Unfortunately in those regions where
we have good data on surface--rock frequencies from the Sur-

veyor series of lunar landers there are no fresh craters in

the vicinity. The possible exception to this is Surveyor
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VII which landed. near the-rim of Tycho, one of the youngest
large 1uhar features. The-area-covered in the photographs,
however, -is quite small compared to the area-coverage in
Lunar Orbiter photographs.. :The  Lunar Orbiter photographs,
on the other hand, do not permit: boulder counts below 0.5 m
radius. Therefore we use-Lunar Orbiter data to determine
the absolute number densities for large rocks and Surveyor
data to determine the-break point and slope of the power
law distribution for small rocks.. The coefficient of the
small rock distribution function was determined by matching
the absolute value of the number densities at the break
point. The calculation follows.

From the data of Moore (1969) we have for Tycho
na(a) = 1.013a-u/cm2

between a and a + da where-na 1s the surface number density.
From the Surveyor Project Final Report (1968), we have

a—2°82 2

na(a) = neg /em” , a < 25 cm.

Equating: the number density:at 25 cm we derive the coeffi-
clent ng-

We-have-a silze distribution of surface rocks but we
require a velume distribution function. The two distributibns
may be related:through the use:of the Rosiwal (1898) princi-

pal: the ratio of the area occupled. by the particles of a
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given size- to the-total area-studied. is equal.to the ratio

of the volume of the partieles of this size to the total vol-
ume assuming .the particles- exposed at the: surface are repre-
sentative of the particles in the subsurface and the layer

is uniformly mixed. 1In & non-rigorous fashion we may use this
law in its differential form:

3.41 nv(a) 4na3 da = na(a) ﬂa2 da

———

The result of all this is

0.017273:82,em3 | 4 < 25 cm.

Il

3.42 ny(a)

0.76 a_5/cm3 , a > 25 cm.

In view of the present data this is our best guess as
to the average rock distribution function. There will un-
doubtedly be areas with higher number density which will
have higher W,'s than those we shall calculate, as well as
areas with lower Wo's. Since the depolarization and cross
section depend on W, to a higher power than 1, we may expect
that the predictions based upon W, calculated below are more
uncertain in the direetion of increasing w, than in the oppo-
site direction.

A good intuitive’feeling for the physical appearance
of rocks distributed according to nV(a) is obtained from the

calculation of fV, the fraction of the total volume occupied.
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For rocks larger than 1 mm., f, =-0.58. The fraction of the

Vv
volume ogcupied~by'rocks contributing. to the scattering at
any waveiéngth gives a good feeling for the relative magni-
tude of £,. Thus integrating from a = 1 to a = 20, fV is
0.03,.0.21, 0.29, 0.26, 0.20 for 7.5m, 68cm, 23cm, 3.8cm
and 8mm respectively. The single scattering albedo, as we
shall see-below,: even though convolved with the Mie theory,
follows the above pattern quite well: We- see-that on the
oasis of the-size distribution alone &, is fairly constant
from 68 cm. to 8 mm., but &, for 7.5 m is down by a large
factor.

The next parameter of interest in the calculation of
W, is the absorption length in the dust, Ka = LoA. We can
obtain £, in two ways: from thermal models of the lunar sur-
face and by direct measurement of lunar fines brought back
by Apollo's 11 and 12, ,

Linsky (19669 has dérived a-set of moedels to fit the
curves of radiothermal temperatures versus phase angle. We
get £, = 10 and £, =-16 ffém two of his best fit models.
The other models all give £, = 10,

Measurements- of ﬂa from Apollo. data has -been carried
out by Gold et- al. (1976,1971)5 The-absorption length de-
creases- as therdegree~d%-paeking increases. Using the data

of Costes et-al. (1970) for densities-and porosities observ-
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ed in core-tubes and under maximum packing and referring
this to the curves-of Gold et al. (1970,1971) for absorp-
tion length versus density we:-get £, = 10. This is the
value we shall use. We note, however, that terrestrial
basalts with similar powder densitles- have absorption
lengths from 2 to 5 times greater - (Campbell and Ulrichs,
1969). This difference may be due-to the high ilmenite
content observed in the rock and dust (Chung et al., 1970;
Katsube and Collett, 1971). We-shall return to this point
shortly.

We can readily calculate P the index of refraction
of the dust, from the same-set:of measurements used above.
The densities in two core tubes-and the density of maximum
compaction all give ng = 1.6 + 0.05. This is the index of
refraction of the surface that we used in section VIIT to
derive FC = 0.5, We show in seetion X that this value of FC
can be caleculated a priori, although. the uncertainty is lar-
ger than for ng calculated a priori. Thus we have used ng
to determine FCo

We come finally to the complex index of refraction of
the rock relative to the dust, n. = n_ - in,. 1In what fol-

r r
lows we have divided the real part  of the index of refraction

\

of the rock relative to vacuum by<nS to obtain n.,. The imag-

inary part, however, is not divided by ng. This is because
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for small values of ny relative to n, (i.e., small loss tan-
gent, -tané =‘ei/er), the ébsorption.length in the rock 1is
inversely proportional to ng and independent of N, Since
the absorption in the rock does-net change-with Ny neither
does n .

The uncertalinty in the values-we. shall usé for ﬁr
are the greatest source of error in determining @,. Ter-
restrial rocks exhibit large variations in n, and ny in
samples taken in the same - area and even greater variations
in samples taken in different areas  (Campbell and Ulrichs,
1969). There is-no "average”:tefrestria1<ro¢k,-although an
extraterrestrial observer might-try to define one. This is
just-what we are-trying to do for lunar rocks. Consequently
it 1s useful to emphasize the-variability .of theoretical
Wo's before defining -a most probable valué,

Table 3.2 give:-the:subsurface single scattering al-
bedo for 10-1unar'rocks-broﬁght?back.by;Apollo's-ll and 12.
The -complex  index’ of refraction relative to the dust has .
been derived- from published .graphs.. :M..Campbell (personal‘
communication) has emphasized:that»the values read from
- these graphs. are more accurate-than.the data itself; hence
the reiuctance-tO‘publish tables as we-do below.  The albe-
dos 1indicated as’1owef*11mits*were~derived from ﬁr measur-
ed atv3Om--wavelength~.o»-'Fo-r-sherter»awaveleng-ths-nr remains

relatively constant, but~ni decreases.andn&o.increases,
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TABLE 3.2

AT 23 CM. WAVELENGTH

~

lunar highlands;
anorthosite

’ﬁr - nii We REFERENCE COMMENTS

1.7 .081 0.58 Gold, Measured at 68 cm.

1.6 .081 0.55 O'Leary & wavelength.

1.3 .051 0.49 Campbell

1.5 .051 0.61 (1971)

1.8 .031 0.75 Katsube & Igneous; ilmenite con-

‘ftent 15-20%
.38 L0211 ~0.31 Collett lgneous; ilmenite con-
{tent 3-4%

I.7 .031 0.74 (1971) Breccla

T RER:S 0.52 Chung, [Dense crystalline
igneous; ilmenite 16%

2.0 L1841 0.54 | Westphal Dense crystalline
ilmenite 15%

1.5 .061 0.57 & Simmons Fine gralned breccilia;
ilmenite 9%

1.7 L0481 0.70 (1970) NlHawaiian Oahu Basalt
0

1.5 .061 0.57 N{Cape Neddick Gabbro

1.5 .00241 0.87 AlSimulated sample,
Plsimilar to Apollo
Olrocks of this ref.
Libut ilmenite 4%
LT -

1.6 .021 Wood (1970) O|Proposed material for
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Also given in the table are-twe earth basalts, a simulated
lunar sample-with similar chemieal analysis..but reduced il-
menite content and -an-anorthrositic rock such as that pro-
posed by Wood .et al. (1970) as a-major . constituent of the
highlands.

Katsube-and:Collett (1971) and Chung.et al. (1970)
have suggested that large_nr andini-may:be correlated with
increased ilmenite eontent. -These factors act in opposite
‘ways.on W,, but referring to table 3.2 -there appears to be
some- correlation in the direetion of deereasing ilmenite
yielding higher @,'s. The Surveyor alpha scattering exper-
iments of Surveyors- V and-VI, both-of whiech landed 1in maria
regions, and Surveyor VII which' landed in the lunar high-
lands (Surveyor Project Final Report, 1968) imply the high-
lands ‘have less:-heavy -metals .than the maria. We would ex-
pect a smaller ilmenite abundance: in-those regions. This
expectation coincides=zwith the-speculation of Wood et al.
(1970) and Wood (1971) that the-lunar highlandé have a high-
er abundance-of:anorthrositic:rocks. The idea:is based in
‘part on observations of Apollo 11 and 12 fines and the fact
that such rocks-have - lower densities- than maria basalt.
Since highlands cover 2/3 of the-visible-face of the moon
we suggest that rocks with small-ilmenite abundance are the

principle- depolarizing agents. -From these ceconsiderations
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_ o.gt0.1

and table 3.2 we-suggest that o, 0.3

in the highlands,
lower in the maria.

The limits on W, imply that at best multiple scatter-
ing in the lunar surface can explain almost all of the obser-
ved depolarization. At worst, figure 3.10 implies that at
least 30% of the circular depolarized power is due to mult-
iple scattering and.70% is due to single scattering while
figure-3.11 implies that at-least 50% of the linearly depol-
arized power is due to multiple scattering. As we have men-
tioned .in sectlion VIII we would expect some-of the observed
depolarization to be due to single scattering, no matter how
high a single scattering albedo-is. observed or deduced.

Before leaving the subject at hand we pause to con-
sider whether the wavelength-dependence: of (&, in our model
can explain the observed wavelength dependence of the absol-
ute diffuse eross section and the eircular depolarization
ratio. As we have suggested before, W, i1s approximately
constant form 68 cm. to 8 mm., but is significantly lower
at 7.5m. Specifically, for the simulated lunar sample of
Chung et al, (1970) &, = (0.45,0.86,0.87,0.85,0.82) at
(750,68,23,3.8,0.8) cm. respectively. We see that on the
basis of W, alone we are unable to explain the increase of
the diffuse-eross section with deereasing wavelength. An
explanation is proposed in: the next seetion where we discuss

the nature of the crater scattering more closely.
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We are successful, however, in explaining the observed
relative constancy of the depolarization from 68 cm. to 3.8
cm. Single scattering would imply the same result. But sin-
gle . scattering.would predict that.towards 7.5 m. and at lon-
ger wavelengths- the- depelarization would remain constant pro-
vided there is no syétematic change -of rock shape with size.
We predict .a rapid. decrease~of depolarization with wavelength
beyond 1 m., the-exaet rate being-highly dependent on the
amount of multiple scattering. A curve of depolarization vs.
wavelengths- greater than 1 m. could yield immediately from
our model the degree:-of multiple vs. single scattering. .In
.view of the possible. geelogical.slgnificance -of the mult-
iple scattering model we urge:such. measurements be made.

We propose one final-test-of our model. Since the
"depolarization is highly dependent on. the.random existence
of large.rock.concentrations we-predict that as the resol-
ution element  of the radar-observations decreases the de-
polarization will begin:to fluctuate more than would be ex-
pected .from decreased:signal to noise.. This effect may be
present in. figure 3.15, as-.was.discussed.in section VIII.
Further, we predict-that the-sense:of the .fluctuations will
be-in the direction of decreased depolarization in the ab-
sence of large boulder fields, If such an effect is obser-
ved only multiple scattering could account for it. We urge

- that this observation also be:performed.



X THE TOTAL DIFFUSE. RADAR CROSS SECTION OF THE MOON

Until now we have been discussing the relative angu-
lar behavior of the diffuse component. No effort has been
made to describe the fresh crater distribution and the de-
tailed nature of real lunar craters. Consequently we have
not been able to discuss the-total diffuse cross section,
fo which we now turn.

This seetion is: divided into five subsections. 1In
the first we-develop-the equation relating. the scattering
matrix for a typical crater site anrd the distribution func-
tion of lunar craters to the diffuse cross section. Next
we deseribe a model for the observed crater- -distribution and
some characteristic features. In the final three parts we
disecuss, in turn, the total diffuse cross section, the wave-
length dependenece of the-eross seetion, and the observed
differences between highland and maria regions. We suggest
that highland-maria-differences may be due to mineralogical
differences and thus propose that- the depolarization ratio

may be used to map the moon geologically.

l. Diffuse Cross Section - Theory

We-have chosen to derive the diffuse cross section
"1ln two steps. First we use-the-Mueller-matrix for crater

and ejecta blanket, M, to calculate the gain from a complete-

270
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ly cratered planet. Then the-gain is combined with a cra-
tering.law to produce the gain- (er cross section) for the
moon. In what follows we take M to be-a secalar scattering
function instead of a matrix since we are interested in in-
tensity only.

-Let Pt~be~theﬂpower:transmitted~ander the power re-
ceived~at-the*radaraunit;“Ar, the area of the receiver; Gr’
the gain-.of the receiver; L, the lunar distance; e the gain
-of the fully cratered-lunar surface; and a, the lunar radius.
Then the .flux incident at the moon, normal to the direction
of propagation is P,.

P,G

3.43 p, = t P
Umr,?

The power per:unit-solid angle- or intensity radiated back to

the receiver—fromran'element-of area dA is

3.4y - a1 = MW Pouda
: r Yy
The total intensit& reflected baek - to earth is
_ P P em 1 )
3.45 I =~Ir%f0 vJo M(u)a“dudn

where n is the azimuthal coordinate.- The power received by

»the~antenna“is~thé~intensity:times~the solid-angle occupied-

by the receiver as seen from the moon.

3.46. o P = In Ay
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On the other hand the power received 1s given by the radar

equation

P_G_A
3.)47 P =.t—ug 'n'az

T (upp2y2C
Substituting equations 3.43 and 3.45 into 3.46 and comparing

3.46 and 3.47 we find
1
3.48 g (1) = 2[0 M(u3T)du

For a Lambert surface where M =’Mu2 the gain would be 8/3.
We also note that this definition of 8. equals U4 times the
geometric albedo of a-planet which scatters according to M.
The parameter- T, the optical depth, has been reintroduced
in equation 3.48 for use below.

In our model of the lunar surface we will assume that
only craters greater- than a-diameter-D, are-blocky enough to
contribute to the cross seetion. This.conforms to the. obser-
vations of Meore (1969) who observed that small fresh craters
have a much smaller-proportion of thelr area covered by rocks.
We take-the depth of the scattering. layer to. be uniform in-
side and.outside~th¢:erater~and'to be only a function of the
crater diameter, D. Thus T = T(D). The distribution of
fresh craters is given by n(D) such that the number of crat-
ers per unit area with diameters between D-and D + dD is

n(D)dD. Then the gain of the model moon is

{
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* mD?
3. 49 g= [ g (x(0) 2 n(pyan
D

o

-2+ The-Fresh: Crater Distribution Function

The discussion below is based upon the work of Moore
(1969) and his discussion of crater frequencies and morpho-
- logles. From his work we find that for rough maria.as well
as for seome highland:regions:the number. of craters with dia-
meters~greéter>than D is given by the:general law

1071p~? » D <D,

N(D)
3.50

1071 p73, b > D

c c
‘Smooth maria which we will not consider in any detail, dis-
play. a slightly:more-complicated -behavior but the general
behavior is like-that?of‘equétionl3.5031 The D_21aw refers
to a steady state surface which is the result of an equil-
~ibrium between- crater production and erosion by extensive
cratering.- The*Df3 law reflects the-rate of crater produc-
tion for a particular model-of: impacting-asteroids over
geologic time.

We. are  interested:in-the: distribution - function for

fresh craters. This can be: derived:-from the distribution
»function-for;allleraters-because;steady;state*frequency
-distributions exist not only. for all craters but also for

craters with given morphologles.:-0Our definition. of a fresh
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crater, however, differs from Moore's in that we differenti-
ate en the basis. of scattering.properties, not morphologies.
Moore defines a fresh crater as one-in which 31/32 of the
original relief has been preserved. We shall define a fresh
crater as having an ejecta blanket capable of significant
scattering. For that purpose we define t¥ to be the depth
to which bombardment by small meteorites causes a crater to
cease being a strong radar anomaly. Now Moore states that
crater 1lifetimes are proportional to their depths. This can
be derived with some discussion from equation 3.50. What
this means for our development is that the depth of steady
state pulverization of the-rocks in the ejecta blanket
(which we take as covering the inside of the crater as well)
is proportional to the age of the crater. Thus a fraction
t¥/d of all steady state craters with diameters D will be
among those we shall consider fresh, where d is the crater
depth. For fresh craters we will take D = Ud following
Moore.

The position of the-break point, DC, is also a func=
tion of crater morphology. DC is the smallest size crater
that has not been completely eroded over the lifetime of the
moon. If we demand instead a depth of erosion t¥*, the break
point would come at a larger diameter dc/t* Dc’ where dC is

the depth corresponding to a diameter DCQ The D_2 law of
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the steady state distribution now becomes a.D"3 law after
multiplication by t¥/d. 'On the other hand the exponent of
the original D—3 portion of the cratering law remains un-
changed because a constant fraction, independent of D, would
be among . those we-would consider fresh. This follows when
we note- that eraters with D > Dc.have not been destroyed in
the history of the-moon and when we- assume- that the exponent
of the power law distribution of impacting bodies has not
changed over'time; Then the fraetion of:craters with D > DC
that has been eroded to-a depth. t¥ will be independent of D.
With thefabovercdnsiderations the-distribution func-
-tion no longer has- a break~peint and we may write for all

“fresh craters

3.51 N(D) = 0.4t#*p™3
and the crater density funection becomes

3.52 . ‘n(D) = 1.2t*p~ "

Not all of these craters, however, will possess ejecta
blankets blocky. enough or deep enough to cause significant
scattering.  The crater must penetrate- the regolith to have
blocks. For highland regions this lower. 1limit, Dy, is 100 m.
diameter while for mariarregions the limit is 10 m. Not all
craters larger than these-limits-produce sufficient blocks
to be of 1lnterest. ~From the small amount of data available

on the fraction of area covered by:blocks larger than 1 m.
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for various crater diameters we take D, to be 400m. The
value may be different for the maria and highlands. This
estimate is very crude and is based upon poor statistics.
From the limited data available, the lower limit scales
approximately as the wavelength so we-write the lower 1limit
as Do, = Do A

The optical depth of the ejecta blanket can be est-
imated by taking the depth:of the ejecta blanket to be 1/2
the rim height. The depth of the ejeeta blanket is then
2X1O-2D,.since the rim height is directly proportional to
D. The-optical depth for a 400 m crater at 70 cm. wave-
length is 12 for the rock-composition and distribution dis-
cussed previously. As we have seen in figure 3.14 the lim-
it for infinite optical depths is. approached near 1 = 4,
Thus it will be. sufficient to use only-the results. for infin-
ite optical depth in deriving the eross section. This is
also the justification for displaying only:the results for
T = ® 1n section VIII. The ad hoe assumption that the depth
of the ejecta is 1/2 the:crater rim height is not crucial to
this analysis, though a much lower value might somewhat alter
the cross section we- ealculate next.

The depth t¥* may be estimated by taking it to be that
depth with a two way optical depth due to dust alone of 1,

For the dust obtained by Apollos 11 and 12, t¥ = 5 , This
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value for t¥ is valid when we expect that the meteoritic
flux pulverizes all rocks to this depth and stirs up no

rocks from below.

3. The Total Diffuse.Cross Section

Using. the previous choice-of parameters the equation

for the diffuse-eross section becomes

-4

o(X) )daD

1]

]
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N

Sm———y
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0
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8
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3.53 4,71 g./Do Ta?

0.012ma?

The cross section above, while. being. independent of wave-
length as written, is more strictly true for 70 cm. wave-
length. D, may be. A dependent, but was derived for A = 1m.
Also, g, was expressed for n, = 1.6 at 70 cm. and this too
varies with A as discussed below.

The observed diffuse cross section at 70 cm. is
0.011 + 0.005 wa? (Pettingilgand Thompson,i§68)° Our value
agrees with this quite well, but the: agreement must be in
part fortuitous., There are large-uncertainties here. We do
not know W, very well due to uncertainties in nV(a) and ﬁr’
The value of W, 1s not expeeted to remain constant across

the crater or from crater to crater as we have assumed. D,

is not well known and, to a- lesser:extent, neither is t¥.
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The cross section is, respectively, inversely and directly
proportional to these last two parameters. Other uncertain-
ties are introduced by the crater shape, which is not pre-
cisely parabolic as we have assumed, and by the fraction of
the area covered by the ejeeta blanket, 1 - Fce It is dif-
ficult to assign error limits to most of the-above factors,
but we estimate, conservatively, that the limits on the cal-
culated diffuse cross section are : 3

A study of the crater Tycho lends more weight to our
results, but cannot be used for error estimates since the
crater is very large-.and constitutes a statistical sample
of one. .Pollack (perseonal eommunication, 1971) has calcu-
lated the- diffuse ‘eross seetion of the erater interior to
be 0.4 E%i f 2 whereas- our calculations give 0.5 ﬂ%i . He
used the observed depelarized-enhancement along E-W swaths
across the crater, allowling for the difference in the back-
.ground near- Tycho from  the mean backgreund. He also calcu-
lates that the interior of the crater is responsible for
50 = 10%-of the total diffuse refleectance. This is further
Justification for our use of Fc =-0.5 and lends additional

welght-to the choice of ng = 1.6,
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4. The Wavelength. Dependence

v

The observed diffuse-ecross seetion is about a factor
of 2 higher at 3.8 cm than at 70 em (Pettingill and Thompson,

=0:3 qaw (Hagfors, 1967a).

1968), and abproximately obeys a A
Equation 3.53 for the diffuse cross section displays no wave-
length dependence, however. This is due to some of the ap-
proximations we have used. We expect the observed wavelength
dependence to arise from three-factors: the single scattering
albedo, .the refractive: index- of the rock relative to the dust
and .the - fraction of the: lunar surface covered by fresh craters.
The slngle scattering albedo, as we have calculated in
section IX, is. relatively-constant between 3.8 and 70 cm.
This is largely the result of the reck distribution we have
chosen, and the position of the break point. There is evi-
dence, however, from the depolarization ratio r, shown in
figure 3.10, section VIII, that W, decreases from 0.88 to
0.83 as A increases from 23“cm° to 68cm. This implies (see
figure 3.23) a decrease‘of a factor of 1.3 in the cross sec-
tion, which is similar to tﬂe actual observations within the
error. bars.. Theﬁdecrease»of Wo -With A is expected on the
basis of measurements of Ap%;lo 11.and 12 rock samples (Chung
et al.,1970; Katsube and Coiiett,.l97l). Their work impliles:

that the loss tangent increeses~asuk increases, but approaches

a constant value- for A nea#/l—lo-cm, Thus-we would not ex-
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pect much change.in &, from 23 cm. to 3.8 cm. The constancy
of the depolarization ratio at these-wavelengths (Zisk, 1970)
adds weight to this argument.

But a variation in o is observed between 23 cm. and
3.8 cm. The seeond factor, N, becomes more important in
this interval. We expect n, to inerease as A decreases be-
cause a large fraction of the radiation will be returned in
the upper meter of the dust where the density and refract-
ive index of the dust can be expeeted to be smaller than at
greater depths. Thus n., increases - as A decreases. Fresnel's
laws, along with the more complete Mie theory, predict that
0 increases as n, increases. This 1s shown in the single
scattering phase function in figure 3.8, section III, and the
cross section per unit area-in figure 3.24. A factor of
1 --2 in cross seetion is thus predieted, depending upon the
refractive index of the-rocks relative to vacuum.

The: third factor in the wavelength dependence is the
fraction of area covered by fresh craters. Accoerding to our
derivation-it is propeortional to t*/DoA . To a first approx-
imation we took both t¥* and D°A to be directly proportional
to A. The absorption length and hence t* is known from ter-

restrial rocks to vary as between A1200 ang ate1d

\
et al., 1970). The dependence of DOA on A, however, is on-

(Thompson

ly‘speculative since Lunar Orbiter and Surveyor photographs
\
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Figure.3.23 Disk integrated polarized and depolarized diffuse cross section as

a function of?ﬁo The cross sections -are calculated assuming the lunar

surface is uniformly covered with an optically thick scattering layer.



Figure 3.24 Diffuse cross section / unit surface area with the index of refraction
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give little information  on fresh craters:-in the rock size
regime in which we- are- interested. - There is evidence that
the largest  rock size-produced in a cratering event is di-
rectly proportional to the:size of the ecrater (J.B. Pollack,
personal communication, 1971). This is the source of the

assumed Al'o variation for D°A‘ Thus the fractional area
covered by fresh. craters has:little-effeet-on the wavelength

dependence, -although' the-exaet effeet is uncertain.

5. Maria-Highland-Differences-and:Implications for Future

Radar. Experiments:

Highland regions are-consistently observed to have
a larger-depolarized-return than maria regions}‘ Observa-
tions at 70cm. wavelength (Thompson, 1968) reveal variations
-of from.2 to 5, and similar results have been.obtained from
a preliminary analysis of 3.8 em. data (Zisk,; 1970). The
explanation. for this phenomenon, within. the context of our
model, is probable differences-in the single scattering al-
bedo between -the types-of regions:due:-to differences in min-
eralogy.

We suggestwthat-thé mest important single parameterv
affeeting maria-highland differeneces:is-the single scatter-
ing albedo, Wy. Figure- 3.23 shows that a factor of 5 in-~
crease-in the-depelarized-cross:seetion- results by changing

@o from 0.65 to 0.90. ' This range of &, is within the range
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calculated for the refractive index of Apollo 11 and 12 rock
samples obtained from maria regions alone. (See table 3.2).
Alternatively W, may be varied over this range by changing
the absorption length  in the dust, Za’ by a factor of 3.5,
since to a first approximation 1-&, is inversely proportion-
al to Ka. This and larger-variations in Ea are observed for
different terrestrial rock powders (Campbell and Ulrichs,
1969).

The above-hypothesis leads us to ask whether a sys-
tematic difference in &, exlsts between highland and maria.
At present there is no direct evidence. There- is evidence,
however, that there may be a systematic difference in the
percentage of ilmenite between the two types of surface and
that the 1llmenite-content is direetly related to Wo. The
Surveyor alpha scattering experiments  have -shown significant-
ly less titanium at the Surveyor VII highland site than at
the maria areas sampled. Measurements by Chung et al. (1970),
and- Katsube-and Collett (1971) on returned lunar rocks re-
veal differences- in the ilmenite (FeOCTiO2) content from
rock to rock. Their data for the complex index-of refrac-
tion coupled with our calculations for W, show a one to one
correlation between ilmenite  content and ®,, such that the
less ilmenite the higher ®,. Table 3.2 of section IX dis-

plays the results of the computation. For example, a sim-
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ulated lunar sample, with 4% ilmenite gives W, = 0.87 while
the lunar sample with similar mineralogy but 16% ilmenite
gives W, =4O°52, Too much emphasis. should not be placed on
thls, however, because the effeets  of crystalline structure
and composition have not been well separated. The "average"
W, of ten lunar rocks measured is 0.62 while the average of
the low ilmenite simulated lunar sample and an anorthrosite
proposed by Wood(1970) for the lunar highlands is 0.84. The
data for anorthrosite was taken from the paper by Campbell
and Ulrichs (1969).

The possible correlation of W, with the ilmenite or
heavy metal abundance deserves  further investigation. If
it can be shown. that there is significant correlation then
‘maps of the depolarization ratio across the lunar surface
could be.interpreted, in light: of our model, as mineralogi-
cal maps.. Not only could general differences- from maria to
highland be: interpreted this way, but. fresh craters of the
same morphology and apparent: rock distribution could serve
as localized probes of the mineralogy across the visible
face of the moon. Thus. radar could be used to map the moon

geologically.
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